Uniform Infinite Planar Triangulations

The existence of the weak limit as n→∞ of the uniform measure on rooted triangulations of the sphere with n vertices is proved. Some properties of the limit are studied. In particular, the limit is a probability measure on random triangulations of the plane.

[1]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[2]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[3]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[4]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[5]  Vladimir Kazakov,et al.  The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents , 1987 .

[6]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[7]  Nicholas C. Wormald,et al.  The Size of the Largest Components in Random Planar Maps , 1999, SIAM J. Discret. Math..

[8]  W. G. Brown Enumeration of Triangulations of the Disk , 1964 .

[9]  Scaling in quantum gravity , 1995, hep-th/9501049.

[10]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[11]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[12]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[13]  Edward A. Bender,et al.  0-1 laws for maps , 1999 .

[14]  Nicholas C. Wormald,et al.  Almost All Maps Are Asymmetric , 1995, J. Comb. Theory, Ser. B.

[15]  B. Duplantier Random walks, polymers, percolation, and quantum gravity in two dimensions , 1999 .

[16]  Jean Zinn-Justin,et al.  Fluctuating geometries in statistical mechanics and field theory , 1996 .

[17]  Omer Angel Growth and percolation on the uniform infinite planar triangulation , 2002 .

[18]  Nicholas C. Wormald,et al.  Random Triangulations of the Plane , 1988, Eur. J. Comb..

[19]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[20]  O. Cohen Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .

[21]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[22]  Zhicheng Gao,et al.  Root Vertex Valency Distributions of Rooted Maps and Rooted Triangulations , 1994, Eur. J. Comb..

[23]  W. T. Tutte A Census of Slicings , 1962, Canadian Journal of Mathematics.

[24]  Edward A. Bender,et al.  Largest 4-Connected Components of 3-Connected Planar Triangulations , 1995, Random Struct. Algorithms.

[25]  Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.

[26]  W. T. Tutte A Census of Hamiltonian Polygons , 1962, Canadian Journal of Mathematics.

[27]  Philippe Flajolet,et al.  Planar Maps and Airy Phenomena , 2000, ICALP.

[28]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[29]  W. T. Tutte On the enumeration of convex polyhedra , 1980, J. Comb. Theory, Ser. B.

[30]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[31]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[33]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[34]  B. Duplantier RANDOM WALKS AND QUANTUM GRAVITY IN TWO DIMENSIONS , 1998 .

[35]  Zheng-Xu He,et al.  Hyperbolic and parabolic packings , 1995, Discret. Comput. Geom..