Optimal design of large‐scale chemical processes under uncertainty: A ranking‐based approach

An approach for the optimal design of chemical processes in the presence of uncertainty was presented. The key idea in this work is to approximate the process constraint functions and model outputs using Power Series Expansions (PSE)-based functions. The PSE functions are used to efficiently identify the variability in the process constraint functions and model outputs due to multiple realizations in the uncertain parameters using Monte Carlo (MC) sampling methods. A ranking-based approach is adopted here where the user can assign priorities or probabilities of satisfaction for the different process constraints and model outputs considered in the analysis. The methodology was tested on a reactor–heat exchanger system and the Tennessee Eastman process. The results show that the present method is computationally attractive since the optimal process design is accomplished in shorter computational times when compared to the use of the MC method applied to the full plant model. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3243–3257, 2014

[1]  N. N. Ziyatdinov,et al.  Optimization of chemical processes with dependent uncertain parameters , 2012 .

[2]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[3]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[4]  N. N. Ziyatdinov,et al.  Optimization problem with normally distributed uncertain parameters , 2013 .

[5]  N. N. Ziyatdinov,et al.  Optimal design of chemical processes with chance constraints , 2012, Comput. Chem. Eng..

[6]  Zdravko Kravanja,et al.  Sensitivity analyses for scenario reduction in flexible flow sheet design with a large number of uncertain parameters , 2013 .

[7]  N. Sahinidis,et al.  Optimization in Process Planning under Uncertainty , 1996 .

[8]  Lorenz T. Biegler,et al.  Optimal process design with model parameter uncertainty and process variability , 2003 .

[9]  Lorenz T. Biegler,et al.  New strategies for flexibility analysis and design under uncertainty , 2000 .

[10]  Günter Wozny,et al.  Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity , 2009, Comput. Chem. Eng..

[11]  Lorenz T. Biegler,et al.  Design for model parameter uncertainty using nonlinear confidence regions , 2001 .

[12]  Carl D. Laird,et al.  Optimal design of cryogenic air separation columns under uncertainty , 2010, Comput. Chem. Eng..

[13]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[14]  Nikolaos V. Sahinidis,et al.  A finite branch-and-bound algorithm for two-stage stochastic integer programs , 2004, Math. Program..

[15]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[16]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[17]  Ignacio E. Grossmann,et al.  Decomposition strategy for designing flexible chemical plants , 1982 .

[18]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[19]  L. Petzold,et al.  Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .

[20]  Lorenz T. Biegler,et al.  Incorporating joint confidence regions into design under uncertainty , 1999 .

[21]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[22]  Ignacio E. Grossmann,et al.  Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty , 2006, Comput. Chem. Eng..

[23]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[24]  Efstratios N. Pistikopoulos,et al.  An optimization approach for process engineering problems under uncertainty , 1996 .

[25]  N. Ricker Optimal steady-state operation of the Tennessee Eastman challenge process , 1995 .

[26]  Ignacio E. Grossmann,et al.  Optimum design of chemical plants with uncertain parameters , 1978 .

[27]  Christodoulos A. Floudas,et al.  Stochastic programming in process synthesis: A two-stage model with MINLP recourse for multiperiod heat-integrated distillation sequences , 1992 .

[28]  Efstratios N. Pistikopoulos,et al.  Stochastic optimization based algorithms for process synthesis under uncertainty , 1998 .

[29]  M. Wendt,et al.  Nonlinear Chance-Constrained Process Optimization under Uncertainty , 2002 .