Future Gravitational Wave Detectors Based on Atom Interferometry
暂无分享,去创建一个
[1] M. Kasevich,et al. Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.
[2] Harold Metcalf,et al. Laser Cooling and Trapping , 1999, Peking University-World Scientific Advanced Physics Series.
[3] Mattias Johnsson,et al. 80hk momentum separation with Bloch oscillations in an optically guided atom interferometer , 2013, 1307.0268.
[4] J. Zimmerman,et al. Compton Wavelength of Superconducting Electrons , 1965 .
[5] A comparison between matter wave and light wave interferometers for the detection of gravitational waves , 2006, gr-qc/0609075.
[6] A. Miffre,et al. Atom interferometry , 2006, quant-ph/0605055.
[7] Savas Dimopoulos,et al. Atomic gravitational wave interferometric sensor , 2008, 0806.2125.
[8] R. Chiao,et al. Towards MIGO, the matter-wave interferometric gravitational-wave observatory, and the intersection of quantum mechanics with general relativity , 2003, gr-qc/0312096.
[9] Arnaud Landragin,et al. Continuous cold atom inertial sensor with 1 nrad.s-1 rotation stability(Conference Presentation) , 2016, SPIE Photonics Europe.
[10] P. Delva,et al. Matter waves and the detection of Gravitational Waves , 2007 .
[11] Keith,et al. An interferometer for atoms. , 1991, Physical review letters.
[12] A. Clairon,et al. Influence of lasers propagation delay on the sensitivity of atom interferometers , 2007 .
[13] T. Gustavson,et al. Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .
[14] D. Budker,et al. Magneto-optical cooling of atoms. , 2013, Optics letters.
[15] Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO) , 2004, gr-qc/0409002.
[16] December 1 , 1973 .
[17] C. Bordé,et al. Theoretical tools for atom optics and interferometry , 2001 .
[18] N. Efremidis,et al. An ultra-bright atom laser , 2013, 1307.8282.
[19] A. Errico,et al. Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity , 1998 .
[20] Runbing Li,et al. Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement , 2011 .
[21] C. Bordé,et al. Molecular interferometry experiments , 1994 .
[22] C. Bordé,et al. Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors , 2004 .
[23] P. Cladé,et al. Large momentum beam splitter using Bloch oscillations. , 2009, Physical review letters.
[24] Benjamin Canuel,et al. Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer , 2008, IEEE Transactions on Instrumentation and Measurement.
[25] Peter R. Saulson,et al. Terrestrial gravitational noise on a gravitational wave antenna , 1984 .
[26] P. Bender. Comparison of atom interferometry with laser interferometry for gravitational wave observations in space , 2014 .
[27] Tobias J. Hagge,et al. Physics , 1929, Nature.
[28] Steven Chu,et al. Atom interferometry with up to 24-photon-momentum-transfer beam splitters. , 2007, Physical review letters.
[29] Nan Yu,et al. Gravitational wave detection with single-laser atom interferometers , 2010, 1003.4218.
[30] J. E. Debs,et al. Atom lasers: Production, properties and prospects for precision inertial measurement , 2012, 1209.2172.
[31] A. Landragin,et al. Stability comparison of two absolute gravimeters: optical versus atomic interferometers , 2014, 1406.5134.
[32] L. Stodolsky. Matter and light wave interferometry in gravitational fields , 1979 .
[33] S. Chiow,et al. 102ℏk large area atom interferometers. , 2011, Physical review letters.
[34] Onur Hosten,et al. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms , 2016, Nature.
[35] Y. Cai,et al. Particle Interferometry in Weak Gravitational Fields , 1989 .
[36] Francois Biraben,et al. New determination of the fine structure constant and test of the quantum electrodynamics , 2010, 2012 Conference on Lasers and Electro-Optics (CLEO).
[37] McGowan,et al. Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[38] W. Chaibi,et al. Low frequency gravitational wave detection with ground-based atom interferometer arrays , 2016, 1601.00417.
[39] F. Riehle,et al. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.
[40] C. Bordé. Atomic interferometry with internal state labelling , 1989 .
[41] Bernard F. Schutz,et al. Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.
[42] Carnal,et al. Young's double-slit experiment with atoms: A simple atom interferometer. , 1991, Physical review letters.
[43] C. Guerlin,et al. Stability enhancement by joint phase measurements in a single cold atomic fountain , 2014, 1501.01943.
[44] A. Gauguet,et al. He-McKellar-Wilkens topological phase in atom interferometry. , 2012, Physical review letters.
[45] M. Kasevich,et al. New method for gravitational wave detection with atomic sensors. , 2012, Physical review letters.
[46] C. Bordé,et al. Theoretical approaches to laser spectroscopy in the presence of gravitational fields , 1983 .
[47] A. Landragin,et al. Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.
[48] G. Tino,et al. Large-momentum-transfer Bragg interferometer with strontium atoms , 2015, 1510.07939.
[49] C. cohen-tannoudji,et al. The Feynman path integral approach to atomic interferometry: A tutorial , 1994 .
[50] Bernard F. Schutz,et al. Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.
[51] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[52] Is it possible to detect gravitational waves with atom interferometers , 2007, gr-qc/0702118.
[53] A. Peters,et al. High-precision gravity measurements using atom interferometry , 1998 .
[54] G. Tino,et al. Atom interferometers for gravitational wave detection: a look at a “simple” configuration , 2011 .
[55] F. Sorrentino,et al. Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.
[56] W. Chaibi,et al. The matter-wave laser interferometer gravitation antenna (MIGA): New perspectives for fundamental physics and geosciences , 2014, 1505.07137.
[57] J. Reinhardt,et al. Atomic Interferometry with Metastable Hydrogen Atoms , 1991 .
[58] X. Chen,et al. Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.
[59] Holger Muller,et al. Low-frequency terrestrial gravitational-wave detectors , 2013, 1308.2074.
[60] Benno Willke,et al. The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .
[61] B. Linet,et al. Changement de phase dans un champ de gravitation: Possibilité de détection interférentielle , 1976 .
[62] Wolfgang Ertmer,et al. Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer , 2015, 1503.01213.
[63] M. Kasevich,et al. Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.
[64] Achim Peters,et al. Mobile quantum gravity sensor with unprecedented stability , 2015, 1512.05660.
[65] M. Kasevich,et al. Quantum superposition at the half-metre scale , 2015, Nature.
[66] U. Bonse,et al. Test of a single crystal neutron interferometer , 1974 .
[67] Chu,et al. Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.