Future Gravitational Wave Detectors Based on Atom Interferometry

We present the perspective of using atom interferometry for gravitational wave (GW) detection in the mHz to about 10 Hz frequency band. We focus on light-pulse atom interferometers which have been subject to intense developments in the last 25 years. We calculate the effect of the GW on the atom interferometer and present in details the atomic gradiometer configuration which has retained more attention recently. The principle of such a detector is to use free falling atoms to measure the phase of a laser, which is modified by the GW. We highlight the potential benefits of using atom interferometry compared to optical interferometry as well as the challenges which remain for the realization of an atom interferometry based GW detector. We present some of the important noise sources which are expected in such detectors and strategies to cirucumvent them. Experimental techniques related to cold atom interferometers are briefly explained. We finally present the current progress and projects in this rapidly evolving field.

[1]  M. Kasevich,et al.  Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.

[2]  Harold Metcalf,et al.  Laser Cooling and Trapping , 1999, Peking University-World Scientific Advanced Physics Series.

[3]  Mattias Johnsson,et al.  80hk momentum separation with Bloch oscillations in an optically guided atom interferometer , 2013, 1307.0268.

[4]  J. Zimmerman,et al.  Compton Wavelength of Superconducting Electrons , 1965 .

[5]  A comparison between matter wave and light wave interferometers for the detection of gravitational waves , 2006, gr-qc/0609075.

[6]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.

[7]  Savas Dimopoulos,et al.  Atomic gravitational wave interferometric sensor , 2008, 0806.2125.

[8]  R. Chiao,et al.  Towards MIGO, the matter-wave interferometric gravitational-wave observatory, and the intersection of quantum mechanics with general relativity , 2003, gr-qc/0312096.

[9]  Arnaud Landragin,et al.  Continuous cold atom inertial sensor with 1 nrad.s-1 rotation stability(Conference Presentation) , 2016, SPIE Photonics Europe.

[10]  P. Delva,et al.  Matter waves and the detection of Gravitational Waves , 2007 .

[11]  Keith,et al.  An interferometer for atoms. , 1991, Physical review letters.

[12]  A. Clairon,et al.  Influence of lasers propagation delay on the sensitivity of atom interferometers , 2007 .

[13]  T. Gustavson,et al.  Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .

[14]  D. Budker,et al.  Magneto-optical cooling of atoms. , 2013, Optics letters.

[15]  Gravitational wave detectors based on matter wave interferometers (MIGO) are no better than laser interferometers (LIGO) , 2004, gr-qc/0409002.

[16]  December 1 , 1973 .

[17]  C. Bordé,et al.  Theoretical tools for atom optics and interferometry , 2001 .

[18]  N. Efremidis,et al.  An ultra-bright atom laser , 2013, 1307.8282.

[19]  A. Errico,et al.  Relevance of Newtonian seismic noise for the VIRGO interferometer sensitivity , 1998 .

[20]  Runbing Li,et al.  Development of an atom gravimeter and status of the 10-meter atom interferometer for precision gravity measurement , 2011 .

[21]  C. Bordé,et al.  Molecular interferometry experiments , 1994 .

[22]  C. Bordé,et al.  Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors , 2004 .

[23]  P. Cladé,et al.  Large momentum beam splitter using Bloch oscillations. , 2009, Physical review letters.

[24]  Benjamin Canuel,et al.  Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer , 2008, IEEE Transactions on Instrumentation and Measurement.

[25]  Peter R. Saulson,et al.  Terrestrial gravitational noise on a gravitational wave antenna , 1984 .

[26]  P. Bender Comparison of atom interferometry with laser interferometry for gravitational wave observations in space , 2014 .

[27]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[28]  Steven Chu,et al.  Atom interferometry with up to 24-photon-momentum-transfer beam splitters. , 2007, Physical review letters.

[29]  Nan Yu,et al.  Gravitational wave detection with single-laser atom interferometers , 2010, 1003.4218.

[30]  J. E. Debs,et al.  Atom lasers: Production, properties and prospects for precision inertial measurement , 2012, 1209.2172.

[31]  A. Landragin,et al.  Stability comparison of two absolute gravimeters: optical versus atomic interferometers , 2014, 1406.5134.

[32]  L. Stodolsky Matter and light wave interferometry in gravitational fields , 1979 .

[33]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[34]  Onur Hosten,et al.  Measurement noise 100 times lower than the quantum-projection limit using entangled atoms , 2016, Nature.

[35]  Y. Cai,et al.  Particle Interferometry in Weak Gravitational Fields , 1989 .

[36]  Francois Biraben,et al.  New determination of the fine structure constant and test of the quantum electrodynamics , 2010, 2012 Conference on Lasers and Electro-Optics (CLEO).

[37]  McGowan,et al.  Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  W. Chaibi,et al.  Low frequency gravitational wave detection with ground-based atom interferometer arrays , 2016, 1601.00417.

[39]  F. Riehle,et al.  Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.

[40]  C. Bordé Atomic interferometry with internal state labelling , 1989 .

[41]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[42]  Carnal,et al.  Young's double-slit experiment with atoms: A simple atom interferometer. , 1991, Physical review letters.

[43]  C. Guerlin,et al.  Stability enhancement by joint phase measurements in a single cold atomic fountain , 2014, 1501.01943.

[44]  A. Gauguet,et al.  He-McKellar-Wilkens topological phase in atom interferometry. , 2012, Physical review letters.

[45]  M. Kasevich,et al.  New method for gravitational wave detection with atomic sensors. , 2012, Physical review letters.

[46]  C. Bordé,et al.  Theoretical approaches to laser spectroscopy in the presence of gravitational fields , 1983 .

[47]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[48]  G. Tino,et al.  Large-momentum-transfer Bragg interferometer with strontium atoms , 2015, 1510.07939.

[49]  C. cohen-tannoudji,et al.  The Feynman path integral approach to atomic interferometry: A tutorial , 1994 .

[50]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[51]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[52]  Is it possible to detect gravitational waves with atom interferometers , 2007, gr-qc/0702118.

[53]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[54]  G. Tino,et al.  Atom interferometers for gravitational wave detection: a look at a “simple” configuration , 2011 .

[55]  F. Sorrentino,et al.  Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.

[56]  W. Chaibi,et al.  The matter-wave laser interferometer gravitation antenna (MIGA): New perspectives for fundamental physics and geosciences , 2014, 1505.07137.

[57]  J. Reinhardt,et al.  Atomic Interferometry with Metastable Hydrogen Atoms , 1991 .

[58]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[59]  Holger Muller,et al.  Low-frequency terrestrial gravitational-wave detectors , 2013, 1308.2074.

[60]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[61]  B. Linet,et al.  Changement de phase dans un champ de gravitation: Possibilité de détection interférentielle , 1976 .

[62]  Wolfgang Ertmer,et al.  Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer , 2015, 1503.01213.

[63]  M. Kasevich,et al.  Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.

[64]  Achim Peters,et al.  Mobile quantum gravity sensor with unprecedented stability , 2015, 1512.05660.

[65]  M. Kasevich,et al.  Quantum superposition at the half-metre scale , 2015, Nature.

[66]  U. Bonse,et al.  Test of a single crystal neutron interferometer , 1974 .

[67]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.