Establishment of Expression in the SHORTROOT-SCARECROW Transcriptional Cascade through Opposing Activities of Both Activators and Repressors.

[1]  Mario L. Arrieta-Ortiz,et al.  An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network , 2015, Molecular systems biology.

[2]  Erin E. Sparks,et al.  MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root , 2015, Proceedings of the National Academy of Sciences.

[3]  C. Myers,et al.  Transcription Factor Activity Mapping of a Tissue-Specific in vivo Gene Regulatory Network. , 2015, Cell systems.

[4]  Alexander D. Johnson,et al.  Making Sense of Transcription Networks , 2015, Cell.

[5]  Marc Vidal,et al.  Human Gene-Centered Transcription Factor Networks for Enhancers and Disease Variants , 2015, Cell.

[6]  Jason A. Corwin,et al.  An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis , 2014, Nature.

[7]  D. Kliebenstein,et al.  Promoter-Based Integration in Plant Defense Regulation1[W][OPEN] , 2014, Plant Physiology.

[8]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[9]  D. Corcoran,et al.  Paired-End Analysis of Transcription Start Sites in Arabidopsis Reveals Plant-Specific Promoter Signatures[C][W] , 2014, Plant Cell.

[10]  J. C. del Pozo,et al.  The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. , 2014, The Plant journal : for cell and molecular biology.

[11]  Timothy R. Hughes,et al.  Extensive rewiring and complex evolutionary dynamics in a C. elegans multiparameter transcription factor network. , 2013, Molecular cell.

[12]  B. Cohen,et al.  Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks , 2013, Proceedings of the National Academy of Sciences.

[13]  Gabriel Krouk,et al.  TARGET: a transient transformation system for genome-wide transcription factor target discovery. , 2013, Molecular plant.

[14]  Shuang Wu,et al.  The SHORT-ROOT protein acts as a mobile, dose-dependent signal in patterning the ground tissue , 2012, Proceedings of the National Academy of Sciences.

[15]  Doreen Ware,et al.  Enhanced Y1H assays for Arabidopsis , 2011, Nature Methods.

[16]  David E Hill,et al.  Yeast one-hybrid assays for gene-centered human gene regulatory network mapping , 2011, Nature Methods.

[17]  Bryan Lajoie,et al.  Enhanced yeast one-hybrid (eY1H) assays for high-throughput gene-centered regulatory network mapping , 2011, Nature Methods.

[18]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[19]  Molly Megraw,et al.  A stele-enriched gene regulatory network in the Arabidopsis root , 2011, Molecular systems biology.

[20]  M. Levine Transcriptional Enhancers in Animal Development and Evolution , 2010, Current Biology.

[21]  P. Benfey,et al.  Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth , 2010, Nature.

[22]  Pavel Tomancak,et al.  Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome , 2009, Genome Biology.

[23]  M. Berger,et al.  Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors , 2009, Nature Protocols.

[24]  Kazuo Shinozaki,et al.  The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. , 2008, The Plant journal : for cell and molecular biology.

[25]  Daniel L. Mace,et al.  A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns , 2007, Science.

[26]  Renze Heidstra,et al.  PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development , 2007, Nature.

[27]  Xin Chen,et al.  PlantTFDB: a comprehensive plant transcription factor database , 2007, Nucleic Acids Res..

[28]  E. Bornberg-Bauer,et al.  The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. , 2007, The Plant journal : for cell and molecular biology.

[29]  A. Philippakis,et al.  Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities , 2006, Nature Biotechnology.

[30]  Martin S. Taylor,et al.  Genome-wide analysis of mammalian promoter architecture and evolution , 2006, Nature Genetics.

[31]  Di Liu,et al.  DATF: a database of Arabidopsis transcription factors , 2005, Bioinform..

[32]  Stefan R. Henz,et al.  A gene expression map of Arabidopsis thaliana development , 2005, Nature Genetics.

[33]  B. Scheres,et al.  Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. , 2004, Genes & development.

[34]  P. Benfey,et al.  Intercellular movement of the putative transcription factor SHR in root patterning , 2001, Nature.

[35]  Philip N Benfey,et al.  The SHORT-ROOT Gene Controls Radial Patterning of the Arabidopsis Root through Radial Signaling , 2000, Cell.

[36]  P. Benfey,et al.  The SCARECROW Gene Regulates an Asymmetric Cell Division That Is Essential for Generating the Radial Organization of the Arabidopsis Root , 1996, Cell.

[37]  H. Jäckle,et al.  Transcriptional cascades in Drosophila. , 1993, Current opinion in cell biology.

[38]  M. Levine,et al.  Transcriptional repression of eukaryotic promoters , 1989, Cell.

[39]  S. Brady,et al.  Complex 2 Coordinates Cell Type Proliferation and Differentiation , 2016 .

[40]  P. Benfey,et al.  Arabidopsis as a Model for Systems Biology , 2013 .

[41]  B. Scheres,et al.  division SCARECROW action in asymmetric cellArabidopsisdissect Mosaic analyses using marked activation and deletion clones data , 2004 .