Submitted to the Annals of Applied Statistics SCALPEL : EXTRACTING NEURONS FROM CALCIUM IMAGING DATA By

video. We propose a dictionary learning approach for this task. First, we perform image segmentation to develop a dictionary containing a huge number of candidate neurons. Next, we refine the dictionary using clustering. Finally, we apply the dictionary to select neurons and estimate their corresponding activity over time, using a sparse group lasso optimization problem. We assess performance on simulated calcium imaging data and apply our proposal to three calcium imaging data sets. Our proposed approach is implemented in the R package scalpel, which is available on CRAN.

[1]  Shanna L Resendez,et al.  E � cient and accurate extraction of 1 in vivo calcium signals from 2 microendoscopic video data , 2018 .

[2]  Liam Paninski,et al.  Fast online deconvolution of calcium imaging data , 2016, PLoS Comput. Biol..

[3]  Helen Shen Brain-data gold mine could reveal how neurons compute , 2016, Nature.

[4]  H. Sebastian Seung,et al.  Automatic Neuron Detection in Calcium Imaging Data Using Convolutional Networks , 2016, NIPS.

[5]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[6]  L. Paninski,et al.  Fast Constrained Non-negative Matrix Factorization for Whole-Brain Calcium Imaging Data , 2016 .

[7]  Fred A. Hamprecht,et al.  Sparse Space-Time Deconvolution for Calcium Image Analysis , 2014, NIPS.

[8]  Matthijs J. Warrens,et al.  Similarity, Dissimilarity, and Distance, Measures of , 2014 .

[9]  Toru Aonishi,et al.  Detecting cells using non-negative matrix factorization on calcium imaging data , 2014, Neural Networks.

[10]  René Vidal,et al.  Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing , 2014, ICML.

[11]  E. Boyden,et al.  Simultaneous whole-animal 3D-imaging of neuronal activity using light-field microscopy , 2014, Nature Methods.

[12]  Adam M. Packer,et al.  Extracting regions of interest from biological images with convolutional sparse block coding , 2013, NIPS.

[13]  Fred A. Hamprecht,et al.  Learning Multi-level Sparse Representations , 2013, NIPS.

[14]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[15]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[16]  Susanne Reichinnek,et al.  Automated identification of neuronal activity from calcium imaging by sparse dictionary learning , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[17]  Noah Simon,et al.  A Sparse-Group Lasso , 2013 .

[18]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[19]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[20]  L. Looger,et al.  Genetically encoded neural activity indicators , 2012, Current Opinion in Neurobiology.

[21]  Robert Tibshirani,et al.  Hierarchical Clustering With Prototypes via Minimax Linkage , 2011, Journal of the American Statistical Association.

[22]  Joshua T. Vogelstein,et al.  A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data , 2011, 1107.4228.

[23]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[24]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[25]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[26]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[27]  Nicholas M. Mellen,et al.  Semi-automated region of interest generation for the analysis of optically recorded neuronal activity , 2009, NeuroImage.

[28]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[29]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[30]  Hongbo Jia,et al.  Calcium imaging in the living brain: prospects for molecular medicine. , 2008, Trends in molecular medicine.

[31]  Samuel S-H Wang,et al.  Identification and clustering of event patterns from in vivo multiphoton optical recordings of neuronal ensembles. , 2008, Journal of neurophysiology.

[32]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[33]  Liam Paninski,et al.  Statistical models for neural encoding, decoding, and optimal stimulus design. , 2007, Progress in brain research.

[34]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[35]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[36]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[37]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[38]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[39]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.