An effective z-stretching method for paraxial light beam propagation simulations

A z-stretching finite difference method is developed for simulating the paraxial light beam propagation through a lens in a cylindrically symmetric domain. By introducing a domain transformation in the z-direction, we solve the corresponding complex difference equations containing an interface singularity over a computational space for great simplicity and efficiency. A specially designed matrix analysis is constructed to the study the numerical stability. Computational experiments are carried out for demonstrating our results.

[1]  Ya Yan Lu,et al.  Some Techniques for Computing Wave Propagation in Optical Waveguides , 2006 .

[2]  Y. Band Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers , 2006 .

[3]  K. W. Morton Stability of finite difference approximations to a diffusion–convection equation , 1980 .

[4]  Shan Zhao,et al.  Numerical solution of the Helmholtz equation with high wavenumbers , 2004 .

[5]  Shekhar Guha,et al.  Description of light propagation through a circular aperture using nonparaxial vector diffraction theory. , 2005, Optics express.

[6]  Hong Cheng,et al.  Solving Degenerate Reaction-Diffusion Equations via Variable Step Peaceman-Rachford Splitting , 2004, SIAM J. Sci. Comput..

[7]  Ting-Chung Poon,et al.  Engineering Optics with Matlab , 2006 .

[8]  I. S. Kim,et al.  A local mesh refinement algorithm for the time domain-finite difference method using Maxwell's curl equations , 1990 .

[9]  J. Goodman Introduction to Fourier optics , 1969 .

[10]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[11]  R D Richtmyek,et al.  Survey of the Stability of Linear Finite Difference Equations , 2022 .

[12]  Sonia Fliss,et al.  Exact boundary conditions for periodic waveguides containing a local perturbation , 2006 .

[13]  Elisabeth Larsson,et al.  A Domain Decomposition Method for the Helmholtz Equation in a Multilayer Domain , 1999, SIAM J. Sci. Comput..

[14]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[15]  H. Eom Electromagnetic Wave Theory for Boundary-Value Problems , 2004 .

[16]  Qin Sheng,et al.  An adaptive grid method for degenerate semilinear quenching problems , 2000 .

[18]  Jun Shibayama,et al.  Efficient nonuniform schemes for paraxial and wide-angle finite-difference beam propagation methods , 1999 .

[19]  D. Xiu,et al.  An efficient spectral method for acoustic scattering from rough surfaces , 2007 .

[20]  S Guha Validity of the paraxial approximation in the focal region of a small-f-number lens. , 2001, Optics letters.

[21]  Fernando Reitich,et al.  Shape deformations in rough-surface scattering: improved algorithms. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.