TR-FTIR absorption spectroscopy of transition metal carbonyl radicals generated by photodissociation of metal–metal bonds, by halogen abstraction or by radical ligand substitution

[1]  O. G. Adeyemi,et al.  Solvent-Free Organometallic Migratory Insertion Reactions , 2003 .

[2]  Michael W. George,et al.  Nanosecond Time-Resolved Step-Scan FT-IR Spectroscopy in Conventional and Supercritical Fluids Using a Four-Window Infrared Cell , 2002 .

[3]  V. Dufaud,et al.  Supported metallocene catalysts by surface organometallic chemistry. Synthesis, characterization, and reactivity in ethylene polymerization of oxide-supported mono- and biscyclopentadienyl zirconium alkyl complexes: establishment of structure/reactivity relationships. , 2001, Journal of the American Chemical Society.

[4]  M. W. George,et al.  Photochemistry of [CpMo(CO)3]2 (Cp = η5-C5H5) and [Cp*Fe(CO)2]2 (Cp* = η5-C5Me5) in Supercritical CO2: A Fast Time-Resolved Infrared Spectroscopic Study , 2001 .

[5]  S. Buchwald,et al.  A Titanocene-Catalyzed Intramolecular Ene Reaction: Cycloisomerization of Enynes and Dienynes , 1999 .

[6]  M. W. George,et al.  Unstable Species, CpW(CO)2Me and CpW(CO)3, Studied by Time-Resolved Infrared Spectroscopy , 1995 .

[7]  M. W. George,et al.  Photochemistry of [CpMo(CO)3]2. Direct Detection and Kinetics of the Radical CpMo(CO)3 in n-Heptane Solution at Room Temperature by Fast Time-Resolved Infrared Spectroscopy , 1995 .

[8]  M. W. George,et al.  Nanosecond time-resolved infrared spectroscopy: a comparative view of spectrometers and their applications in organometallic chemistry , 1994 .

[9]  R. Hill,et al.  The low temperature photochemistry of (η5-C5H5)M(CO)3X (M Mo, W; X Cl, Br, I): structure and solvation of the CO loss products , 1993 .

[10]  M. W. George,et al.  Photochemical substitution reactions of dinuclear iron complex [CpFe(CO)2]2 (Cp = .eta.5-C5H5) in hydrocarbon and tetrahydrofuran solution at room temperature: a mechanistic study with time-resolved infrared spectroscopy , 1992 .

[11]  N. Chiem,et al.  Mechanism of the photoreaction between (.eta.5-C5H5)M(CO)3X (M = molybdenum, tungsten) and allylic halides , 1991 .

[12]  R. Hill,et al.  The photochemical methyl migration in (η5-C5H5)Mo(CO)2LC(O)Me [L = P(OEt)3, PPh3, PBu3] , 1991 .

[13]  M. C. Baird Seventeen-electron metal-centered radicals , 1988 .

[14]  D. Rayner,et al.  Time-resolved infrared spectroscopy of transient metal carbonyl species in the gas phase , 1988 .

[15]  W. Trogler Kinetics and mechanisms of substitution at paramagnetic metal centers in organometallic complexes , 1987 .

[16]  M. Poliakoff,et al.  Comparative matrix isolation and time-resolved infrared studies on the photochemistry of decacarbonylmanganeserhenium and decacarbonyldirhenium: evidence for carbonyl-bridged nonacarbonylmanganeserhenium , 1986 .

[17]  M. Poliakoff,et al.  Detection of Transient Organometallic Species by Fast Time-Resolved IR Spectroscopy , 1986 .

[18]  M. Poliakoff,et al.  Apparatus for fast time-resolved infrared dectection of reaction intermediates in the solution photochemistry of transition-metal carbonyls , 1986 .

[19]  A. Goldman,et al.  Back-reactions in the photochemical disproportionation of Cp2Mo2(CO)6 (Cp = C5H4CH3) and the wavelength-dependent photochemistry of the Cp2Mo2(CO)6 complex with PPh3 , 1986 .

[20]  A. Goldman,et al.  Photochemical reduction of CpW(CO)3CH3 (Cp = η5-C5H5) to CpW(CO)3-; An isolobal analogy to the disproportionation of Cp2Mo2(CO)6 , 1986 .

[21]  S. Buchwald,et al.  Reaction of dicyclopentadienylmethylenetitanium with organic halides: Evidence for a radical mechanism , 2002 .

[22]  M. Poliakoff,et al.  Fast time-resolved FTIR detection of short-lived photochemical transient species in solution: a direct comparison with IR laser spectroscopy , 1985 .

[23]  A. Mitschler,et al.  Direct synthesis, reactivity, fluxional behavior, and molecular structure of Cp2Mo2(CO)3[PhP(OCH2CH2)2NH] (Cp = .eta.5-C5H5), a compound with a dissymmetrically substituted Mo=Mo Bond. Synthesis and molecular structure of Cp2Mo2(CO)3P(OMe)3 , 1984 .

[24]  K. Schaffner,et al.  The primary photoproducts of Mn2(CO)10: direct i.r. observation and decay kinetics of Mn(CO)5 and Mn2(CO)9 in hydrocarbon solution at room temperature , 1984 .

[25]  M. Poliakoff,et al.  Fast time-resolved infrared spectroscopy of organometallic intermediates; detection of [(η5-C5H5)Fe(CO)2] and [(η5-C5H5)Fe(µ-CO)3Fe(η5-C5H5)] in room-temperature solution , 1984 .

[26]  Takayoshi Kobayashi,et al.  Laser photolysis study of the photosubstitution in dimanganese decacarbonyl , 1983 .

[27]  K. Schaffner,et al.  Flash photolysis with infrared detection. The photochemistry and secondary thermal reactions of M(CO)6 [M = Cr, Mo, and W] , 1982 .

[28]  M. Poliakoff,et al.  Synthesis and characterization of the pentacarbonylmanganese(0) radical, Mn(CO)5, in low-temperature matrixes , 1981 .

[29]  H. Alt,et al.  Photoinduzierte und thermische reaktionen der übergangsmetallethylverbindungen CpM(CO)3Et (Cp = η5-cyclopentadienyl; Et = ethyl; M = Mo, W) , 1981 .

[30]  H. Vahrenkamp,et al.  Reaktivität von Metall‐Metall‐Bindungen. Bildung und Zerfall einfacher Metallcarbonyl‐Zweikernkomplexe als Gleichgewichtsreaktion , 1980 .

[31]  D. Ginley,et al.  Photogeneration of dinuclear metal carbonyls containing a metal-metal triple bond , 1977 .

[32]  M. Wrighton Photochemistry of metal carbonyls , 1974 .

[33]  C. R. Nolte,et al.  Reactions of metal carbonyl derivatives : V. Reaction of bis (tricarbonyl-π-cyclopentadienylmolybdenum) with tertiary alkyl phosphites , 1970 .

[34]  C. S. Kraihanzel,et al.  Reactions of Lewis bases with methylmanganese pentacarbonyl , 1968 .

[35]  C. S. Kraihanzel,et al.  Reaction of Triphenylphosphine with Methylmanganese Pentacarbonyl. Structure and Stoichiometry , 1965 .

[36]  F. Basolo,et al.  Metal Carbonyls. IV. Kinetics of the Reaction of Manganese Pentacarbonyl Halides with a Variety of Ligands , 1962 .

[37]  W. Hieber,et al.  Phosphinsubstituierte Carbonylmanganate(‐I), Organyl‐ und Hydrogenmangancarbonyle , 1962 .