Multipolar radiation of quantum emitters with nanowire optical antennas

Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipoles. Here we demonstrate controlled emission of a quantum dot into multipolar radiation through selective coupling to a linear nanowire antenna. The antenna resonance tailors the interaction of the quantum dot with light, effectively creating a hybrid nanoscale source beyond the simple Hertz dipole. Our findings establish a basis for the controlled driving of fundamental modes in nanoantennas and metamaterials, for the understanding of the coupling of quantum emitters to nanophotonic devices such as waveguides and nanolasers, and for the development of innovative quantum nano-optics components with properties not found in nature.

[1]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[2]  Rashid Zia,et al.  Spectral tuning by selective enhancement of electric and magnetic dipole emission. , 2011, Physical review letters.

[3]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[4]  Xiang Zhang,et al.  Contribution of electric quadrupole resonance in optical metamaterials , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[5]  K. Kern,et al.  Direct near-field optical imaging of higher order plasmonic resonances. , 2008, Nano letters.

[6]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[7]  F. Lederer,et al.  Multipole analysis of meta-atoms , 2011 .

[8]  L. Novotný,et al.  Antennas for light , 2011 .

[9]  Gabriel Molina-Terriza,et al.  Determination of the total angular momentum of a paraxial beam , 2008 .

[10]  U. Kolb,et al.  Fluorescence Anisotropy and Crystal Structure of Individual Semiconductor Nanocrystals , 2003 .

[11]  Yijie Huo,et al.  Antenna electrodes for controlling electroluminescence , 2012, Nature Communications.

[12]  D. Andrews Optical angular momentum: Multipole transitions and photonics , 2010 .

[13]  Pierre-Michel Adam,et al.  Short range plasmon resonators probed by photoemission electron microscopy. , 2008, Nano letters.

[14]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[15]  M. Bawendi,et al.  Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy , 1999, Nature.

[16]  William L. Schaich,et al.  Measurement of the resonant lengths of infrared dipole antennas , 2000 .

[17]  E. Coronado,et al.  Plasmonic Nanoantennas: Angular Scattering Properties of Multipole Resonances in Noble Metal Nanorods , 2008 .

[18]  A. Cohen,et al.  Local geometry of electromagnetic fields and its role in molecular multipole transitions. , 2010, The journal of physical chemistry. B.

[19]  Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas. , 2012, ACS nano.

[20]  M Dahan,et al.  Bunching and antibunching in the fluorescence of semiconductor nanocrystals. , 2001, Optics letters.

[21]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[22]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[23]  Fernando D Stefani,et al.  Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. , 2011, Nano letters.

[24]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[25]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[26]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[27]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[28]  H. Hori,et al.  Theoretical Treatment of Electric and Magnetic Multipole Radiation Near a Planar Dielectric Surface Based on Angular Spectrum Representation of Vector Field , 1998 .

[29]  Edward S. Barnard,et al.  Photocurrent mapping of near-field optical antenna resonances. , 2011, Nature nanotechnology.

[30]  A. Polman,et al.  Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. , 2007, Nano letters.

[31]  P. Grahn,et al.  Electromagnetic multipole theory for optical nanomaterials , 2012, 1206.0530.

[32]  Carsten Rockstuhl,et al.  Fabry-Pérot resonances in one-dimensional plasmonic nanostructures. , 2009, Nano letters.

[33]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[34]  P. Török,et al.  Spin–orbit coupling and conservation of angular momentum flux in non-paraxial imaging of forbidden radiation , 2011 .

[35]  A Leinse,et al.  Probing the Magnetic Field of Light at Optical Frequencies , 2009, Science.

[36]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[37]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[38]  P. Quémerais,et al.  Near-, mesoscopic and far-field regimes of a subwavelength Young's double-slit , 2011 .

[39]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[40]  Hiromi Okamoto,et al.  Plasmon mode imaging of single gold nanorods. , 2004, Journal of the American Chemical Society.

[41]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[42]  S. Bozhevolnyi,et al.  Plasmon-polariton nano-strip resonators: from visible to infra-red. , 2008, Optics express.

[43]  H. Atwater,et al.  Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. , 2006, Nano letters (Print).

[44]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[45]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[46]  Naoya Tate,et al.  Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures. , 2009, Optics express.

[47]  W. E. Moerner,et al.  Photon antibunching in single CdSe/ZnS quantum dot fluorescence , 2000 .

[48]  A. Femius Koenderink,et al.  Fourier microscopy of single plasmonic scatterers , 2011, 1105.3077.

[49]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.