Use of steady-state concentration measurements in geostatistical inversion

In geostatistical inverse modeling, hydrogeological parameters, such as hydraulic conductivity, are estimated as spatial fields. Upon discretization this results in several thousand (log-)hydraulic conductivity values to be estimated. Common inversion schemes rely on gradient-based parameter estimation methods which require the sensitivity of all measurements with respect to all parameters. Point-like measurements of steady-state concentration in aquifers are generally not well suited for gradient-based methods, because typical plumes exhibit only a very narrow fringe at which the concentration decreases from a maximal value to zero. Only here the sensitivity of concentration with respect to hydraulic conductivity significantly differs from zero. Thus, if point-like measurements of steady-state concentration do not lie in this narrow fringe, their sensitivity with respect to hydraulic conductivity is zero. Observations of concentrations averaged over a larger control volume, by contrast, show a more regular sensitivity pattern. We thus suggest artificially increasing the sampling volume of steady-state concentration measurements for the evaluation of sensitivities in early stages of an iterative parameter estimation scheme. We present criteria for the extent of artificially increasing the sampling volume and for decreasing it when the simulation results converge to the measurements. By this procedure, we achieve high stability in geostatistical inversion of steady-state concentration measurements. The uncertainty of the estimated parameter fields is evaluated by generating conditional realizations.

[1]  G. Dagan,et al.  Stochastic identification of transmissivity and effective recharge in steady groundwater flow: 2. Case study , 1987 .

[2]  Wolfgang Nowak,et al.  Efficient Computation of Linearized Cross-Covariance and Auto-Covariance Matrices of Interdependent Quantities , 2003 .

[3]  Jesús Carrera,et al.  Coupled estimation of flow and solute transport parameters , 1996 .

[4]  C. R. Dietrich,et al.  A fast and exact method for multidimensional gaussian stochastic simulations , 1993 .

[5]  A. Mantoglou Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks , 2003 .

[6]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[7]  Frank T.-C. Tsai,et al.  Global‐local optimization for parameter structure identification in three‐dimensional groundwater modeling , 2003 .

[8]  William W.-G. Yeh,et al.  Coupled inverse problems in groundwater modeling - 1. Sensitivity analysis and parameter identification. , 1990 .

[9]  W. Graham,et al.  Estimation of spatially variable residual nonaqueous phase liquid saturations in nonuniform flow fields using partitioning tracer data , 2000 .

[10]  W. Nowak,et al.  A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing , 2004 .

[11]  Yoram Rubin,et al.  A Geostatistical Approach to the Conditional Estimation of Spatially Distributed Solute Concentration and Notes on the Use of Tracer Data in the Inverse Problem , 1996 .

[12]  William W.-G. Yeh,et al.  Development of objective‐oriented groundwater models: 1. Robust parameter identification , 2007 .

[13]  Minghui Jin,et al.  AN ITERATIVE STOCHASTIC INVERSE METHOD: CONDITIONAL EFFECTIVE TRANSMISSIVITY AND HYDRAULIC HEAD FIELDS , 1995 .

[14]  E. G. Vomvoris,et al.  A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .

[15]  Alberto Bellin,et al.  Probability density function of non-reactive solute concentration in heterogeneous porous formations. , 2007, Journal of contaminant hydrology.

[16]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[17]  M. Kobr,et al.  A Simple Borehole Dilution Technique in Measuring Horizontal Ground Water Flow , 2007, Ground water.

[18]  Johan Valstar,et al.  A representer‐based inverse method for groundwater flow and transport applications , 2004 .

[19]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[20]  Allan L. Gutjahr,et al.  An Iterative Cokriging‐Like Technique for Ground‐Water Flow Modeling , 1995 .

[21]  Wolfgang Nowak,et al.  First‐order variance of travel time in nonstationary formations , 2004 .

[22]  Wolfgang Nowak,et al.  Impact of sampling volume on the probability density function of steady state concentration , 2008 .

[23]  M. Marietta,et al.  Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments , 1995 .

[24]  A. Sahuquillo,et al.  Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory , 1997 .

[25]  W. Li,et al.  Two‐dimensional characterization of hydraulic heterogeneity by multiple pumping tests , 2007 .

[26]  P. Kitanidis On the geostatistical approach to the inverse problem , 1996 .

[27]  Virgilio Fiorotto,et al.  Solute Concentration Statistics in Heterogeneous Aquifers for Finite Péclet Values , 2002 .

[28]  Carl D. Palmer Borehole dilution tests in the vicinity of an extraction well , 1993 .

[29]  W. Nowak,et al.  Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data , 2006 .

[30]  E. Caroni,et al.  Analysis of Concentration as Sampled in , 2005 .

[31]  Wendy D. Graham,et al.  Optimal estimation of residual non–aqueous phase liquid saturations using partitioning tracer concentration data , 1997 .

[32]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[33]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[34]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[35]  Wei Li,et al.  Efficient geostatistical inverse methods for structured and unstructured grids , 2006 .

[36]  W. F. Merritt,et al.  A fluoride borehole dilution apparatus for groundwater velocity measurements , 1977 .

[37]  K. Novakowski,et al.  Measurements of groundwater velocity in discrete rock fractures. , 2006, Journal of contaminant hydrology.

[38]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[39]  Dietmar Klotz,et al.  Point dilution methods of investigating ground water flow by means of radioisotopes , 1968 .

[40]  E. Poeter,et al.  Inverse Models: A Necessary Next Step in Ground‐Water Modeling , 1997 .

[41]  Alberto Guadagnini,et al.  Conditioning mean steady state flow on hydraulic head and conductivity through geostatistical inversion , 2003 .

[42]  Peter K. Kitanidis,et al.  Sensitivity of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data , 2000 .

[43]  S. Murty Bhallamudi,et al.  Optimal Groundwater Management in Deltaic Regions using Simulated Annealing and Neural Networks , 2003 .

[44]  Charles F. Harvey,et al.  Temporal Moment‐Generating Equations: Modeling Transport and Mass Transfer in Heterogeneous Aquifers , 1995 .

[45]  William W.-G. Yeh,et al.  A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis , 1992 .

[46]  A. S. Cullick,et al.  Inversion of dynamic production data for permeability: fast streamline-based computation of sensitivity coefficients of fractional flow rate , 2003 .

[47]  J. Gómez-Hernández,et al.  Stochastic conditional inverse modeling of subsurface mass transport: A brief review and the self-calibrating method , 2003 .

[48]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[49]  William W.-G. Yeh,et al.  Aquifer parameter identification with optimum dimension in parameterization , 1981 .

[50]  Andrés Sahuquillo,et al.  Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data , 2003 .

[51]  N. Sun Inverse problems in groundwater modeling , 1994 .