The role of bone marrow microRNA (miR) in erythropoietic dysfunction after severe trauma.

[1]  C. Civin,et al.  MicroRNAs as regulators and effectors of hematopoietic transcription factors , 2019, Wiley interdisciplinary reviews. RNA.

[2]  A. Mohr,et al.  Daily propranolol prevents prolonged mobilization of hematopoietic progenitor cells in a rat model of lung contusion, hemorrhagic shock, and chronic stress. , 2015, Surgery.

[3]  Kye-Seong Kim,et al.  Concise Review: Exploring miRNAs—Toward a Better Understanding of Hematopoiesis , 2015, Stem cells.

[4]  J. Leluk,et al.  microRNAs: fine tuning of erythropoiesis , 2012, Cellular & Molecular Biology Letters.

[5]  Xuetao Cao,et al.  MicroRNA-494 Is Required for the Accumulation and Functions of Tumor-Expanded Myeloid-Derived Suppressor Cells via Targeting of PTEN , 2012, The Journal of Immunology.

[6]  Harvey F Lodish,et al.  From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. , 2011, Blood.

[7]  T. Tuschl,et al.  Combined Characterization of microRNA and mRNA Profiles Delineates Early Differentiation Pathways of CD133+ and CD34+ Hematopoietic Stem and Progenitor Cells , 2011, Stem cells.

[8]  E. Lander,et al.  MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13 , 2011, Proceedings of the National Academy of Sciences.

[9]  M. Biffoni,et al.  MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis , 2009, Haematologica.

[10]  F. Marincola,et al.  Differentiation of two types of mobilized peripheral blood stem cells by microRNA and cDNA expression analysis , 2008, Journal of Translational Medicine.

[11]  Shangqin Guo,et al.  MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. , 2008, Developmental cell.

[12]  O. Kirak,et al.  Regulation of progenitor cell proliferation and granulocyte function by microRNA-223 , 2008, Nature.

[13]  Huiling Xue,et al.  MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. , 2008, Blood.

[14]  Yoko Fukuda,et al.  An Evolutionarily Conserved Mechanism for MicroRNA-223 Expression Revealed by MicroRNA Gene Profiling , 2007, Cell.

[15]  Masayuki Yamamoto,et al.  Transgene Insertion in Proximity to thec-myb Gene Disrupts Erythroid-Megakaryocytic Lineage Bifurcation , 2006, Molecular and Cellular Biology.

[16]  Alessandro Fatica,et al.  A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis , 2005, Cell.

[17]  P. Rameshwar,et al.  The impact of a hypercatecholamine state on erythropoiesis following severe injury and the role of IL-6. , 2005, The Journal of trauma.

[18]  Pranela Rameshwar,et al.  Bone Marrow Failure Following Severe Injury in Humans , 2003, Annals of surgery.

[19]  G. Anderson,et al.  Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c‐Myb , 2003, The EMBO journal.

[20]  T. Rabbitts,et al.  The LIM‐only protein Lmo2 is a bridging molecule assembling an erythroid, DNA‐binding complex which includes the TAL1, E47, GATA‐1 and Ldb1/NLI proteins , 1997, The EMBO journal.

[21]  M. Evans,et al.  The Oncogenic Cysteine-rich LIM domain protein Rbtn2 is essential for erythroid development , 1994, Cell.

[22]  Y. Eto,et al.  Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Vaughan,et al.  Importance of FSH-releasing protein and inhibin in erythrodifferentiation , 1987, Nature.

[24]  E. Zanjani,et al.  Studies of human pluripotential hemopoietic stem cells (CFU-GEMM) in vitro. , 1981, Blood.

[25]  P. Rameshwar,et al.  Adrenergic modulation of erythropoiesis following severe injury is mediated through bone marrow stroma. , 2004, Surgical infections.