The effect of pyrrolidone-based ligands in gas-quenching fabrication of FA0.9Cs0.1PbI3 perovskite films and solar cells

[1]  Tingting Niu,et al.  Perovskite solar cells based on screen-printed thin films , 2022, Nature.

[2]  N. Zheng,et al.  Solvent Gaming Chemistry to Control the Quality of Halide Perovskite Thin Films for Photovoltaics , 2022, ACS central science.

[3]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[4]  E. Barea,et al.  Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication , 2021, ACS energy letters.

[5]  Jinsong Huang,et al.  Stabilizing perovskite-substrate interfaces for high-performance perovskite modules , 2021, Science.

[6]  Fu Zhang,et al.  A Review on Gas‐Quenching Technique for Efficient Perovskite Solar Cells , 2021, Solar RRL.

[7]  R. Munir,et al.  20.8% Slot‐Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO‐Content and Age of 2‐ME Based Precursor Inks , 2021, Advanced Energy Materials.

[8]  A. Ho-baillie,et al.  Integrating Low‐Cost Earth‐Abundant Co‐Catalysts with Encapsulated Perovskite Solar Cells for Efficient and Stable Overall Solar Water Splitting , 2020, Advanced Functional Materials.

[9]  Zhe Yan,et al.  High‐Pressure Nitrogen‐Extraction and Effective Passivation to Attain Highest Large‐Area Perovskite Solar Module Efficiency , 2020, Advanced materials.

[10]  Matthew R. Leyden,et al.  Detrimental Effect of Unreacted PbI2 on the Long‐Term Stability of Perovskite Solar Cells , 2020, Advanced materials.

[11]  Q. Jeangros,et al.  Lead Halide Residue as a Source of Light-Induced Reversible Defects in Hybrid Perovskite Layers and Solar Cells , 2019, ACS Energy Letters.

[12]  N. Park,et al.  Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency , 2019, ACS Energy Letters.

[13]  Hao Zhang,et al.  Efficiency of MAPbI3-Based Planar Solar Cell Analyzed by Its Thickness-Dependent Exciton Formation, Morphology, and Crystallinity. , 2019, ACS applied materials & interfaces.

[14]  Jinsong Hu,et al.  Fully Air-Bladed High-Efficiency Perovskite Photovoltaics , 2019, Joule.

[15]  Martin A. Green,et al.  Electrode Design to Overcome Substrate Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells , 2018, Joule.

[16]  D. Cahen,et al.  Understanding how excess lead iodide precursor improves halide perovskite solar cell performance , 2018, Nature Communications.

[17]  Michael Saliba,et al.  From Exceptional Properties to Stability Challenges of Perovskite Solar Cells. , 2018, Small.

[18]  Y. Qi,et al.  Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability , 2018 .

[19]  B. Dunn,et al.  Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. , 2018, Journal of the American Chemical Society.

[20]  Liming Ding,et al.  One-step roll-to-roll air processed high efficiency perovskite solar cells , 2018 .

[21]  Haotong Wei,et al.  Polymer‐Passivated Inorganic Cesium Lead Mixed‐Halide Perovskites for Stable and Efficient Solar Cells with High Open‐Circuit Voltage over 1.3 V , 2018, Advanced materials.

[22]  K. Catchpole,et al.  Superior Self-Powered Room-Temperature Chemical Sensing with Light-Activated Inorganic Halides Perovskites. , 2018, Small.

[23]  Xiaofan Deng,et al.  High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching , 2017 .

[24]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[25]  Wai Kin Chan,et al.  Is Excess PbI2 Beneficial for Perovskite Solar Cell Performance? , 2016 .

[26]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[27]  M. Nazeeruddin,et al.  High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors , 2015 .

[28]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[29]  Timothy L. Kelly,et al.  Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells , 2014 .

[30]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[31]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[32]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[33]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[34]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[35]  M. Green,et al.  Low-pressure Accessible Gas-quenching for Absolute Methylammonium-free Perovskite Solar Cells , 2022, Journal of Materials Chemistry A.