First Order Asymptotic Expansions for Eigenvalues of Multiplicatively Perturbed Matrices
暂无分享,去创建一个
FREDY SOSA | JULIO MORO | J. Moro | F. Sosa
[1] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[2] Tosio Kato. Perturbation theory for linear operators , 1966 .
[3] H. Baumgärtel. Analytic perturbation theory for matrices and operators , 1985 .
[4] M. Overton,et al. On the Lidskii-Vishik-Lyusternik Perturbation Theory for Eigenvalues of Matrices with Arbitrary Jordan Structure , 1997, SIAM J. Matrix Anal. Appl..
[5] J. Barlow,et al. Computing accurate eigensystems of scaled diagonally dominant matrices: LAPACK working note No. 7 , 1988 .
[6] Chi-Kwong Li,et al. The Lidskii-Mirsky-Wielandt theorem – additive and multiplicative versions , 1999, Numerische Mathematik.
[7] Ilse C. F. Ipsen,et al. Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices , 1998 .
[8] Froilán M. Dopico,et al. Low Rank Perturbation of Jordan Structure , 2003, SIAM J. Matrix Anal. Appl..
[9] J. Stillwell,et al. Plane Algebraic Curves , 1986 .
[10] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[11] V. Mehrmann,et al. Eigenvalue perturbation theory of symplectic, orthogonal, and unitary matrices under generic structured rank one perturbations , 2014 .
[12] Rui Ralha,et al. Perturbation Splitting for More Accurate Eigenvalues , 2009, SIAM J. Matrix Anal. Appl..
[13] S. V. Savchenko. On the Change in the Spectral Properties of a Matrix under Perturbations of Sufficiently Low Rank , 2004 .
[14] Froilán M. Dopico,et al. First Order Eigenvalue Perturbation Theory and the Newton Diagram , 2002 .
[15] V. Lidskii. Perturbation theory of non-conjugate operators , 1966 .
[16] Ren-Cang Li. Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..
[17] M. Vishik,et al. THE SOLUTION OF SOME PERTURBATION PROBLEMS FOR MATRICES AND SELFADJOINT OR NON-SELFADJOINT DIFFERENTIAL EQUATIONS I , 1960 .
[18] V. Puiseux. Recherches sur les fonctions algébriques. , 1850 .
[19] A. Ostrowski. A QUANTITATIVE FORMULATION OF SYLVESTER'S LAW OF INERTIA. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[20] Ilse C. F. Ipsen. Relative perturbation results for matrix eigenvalues and singular values , 1998, Acta Numerica.
[21] L. Hörmander,et al. A Remark on Perturbations of Compact Operators. , 1994 .
[22] Ren-Cang Li. Relative perturbation theory. III. More bounds on eigenvalue variation , 1997 .