Hard and soft metal complexes of calix[4]-bis-monothiacrown-5: X-ray and NMR studies of discrete homodinuclear complexes and a heteromultinuclear network.

Endocyclic homodinuclear complexation and endo/exocyclic heteronuclear networking of calix[4]-bis-monothiacrown-5 (L) are reported. First, dipotassium(I) and disilver(I) complexes of L were isolated and their solid state structures characterized. To probe the complexation behavior for these same systems in solution, the competition between potassium(I) and silver(I) for L was monitored by (1)H NMR. Potassium(I) showed a higher affinity to L than silver(I) both in the solid and solution states. The reaction of L with KI in the presence of HgI2 afforded a two-dimensional coordination polymer with the endocyclic dipotassium(I) complex linked by an exocyclic mercury(II) iodide cluster backbone.

[1]  So Young Lee,et al.  Supramolecular networking of macrocycles based on exo-coordination: from discrete to continuous frameworks. , 2012, Accounts of chemical research.

[2]  Eunji Lee,et al.  Rational approach to endo/exocoordinated heteronuclear macrocyclic network: supramolecular Hg(ll), Cu(ll), and Hg(ll)/Cu(ll) complexes of a NS4 macrocycle. , 2011, Inorganic chemistry.

[3]  Hyun Jee Kim,et al.  A calix-bis-crown with hard and soft crown cavities: heterobinuclear K+/Ag+ complexation in solid and solution states. , 2009, Chemistry.

[4]  So Young Lee,et al.  Unsymmetrical calixcrowns incorporating hard and soft loops as a new scaffold for multinuclear endo/exocyclic complexation and networking. , 2009, Inorganic chemistry.

[5]  So Young Lee,et al.  Molecular botanical garden: assembly of supramolecular silver(I) and mercury(II) complexes of NS2-donor macrocycles with flower-, leaf- and tree-shaped structures , 2009 .

[6]  Hyun Jee Kim,et al.  Anion-controlled endo- and exocyclic disilver(I) complexes of an S2O3 macrocycle. , 2008, Inorganic chemistry.

[7]  Hyun Jee Kim,et al.  Networking of calixcrowns: from heteronuclear endo/exocyclic coordination polymers to a photoluminescence switch. , 2008, Journal of the American Chemical Society.

[8]  Hyun Jee Kim,et al.  Comparative structural study of the complexation behaviour of silver(I), cadmium(II), mercury(II), and palladium(II) with a 17-membered N3O2-donor macrocycle , 2008 .

[9]  Wei‐Yin Sun,et al.  Structure diversity and reversible anion exchange properties of cadmium(II) complexes with 1,3,5-tris(imidazol-1-ylmethyl)benzene: counteranion-directed flexible ligand conformational variation , 2008 .

[10]  So Young Lee,et al.  Temperature-dependent 3-D CuI coordination polymers of calix[4]-bis-dithiacrown: crystal-to-crystal transformation and photoluminescence change on coordinated solvent removal. , 2008, Journal of the American Chemical Society.

[11]  So Young Lee,et al.  A co-crystallised coordination system that exhibits two different bis(O2S2 macrocycle) palladium(II) complexes in one single-crystal , 2008 .

[12]  Hyun Jee Kim,et al.  Ligand- and anion-directed assembly of exo-coordinated mercury(II) halide complexes with O2S2-donor macrocycles. , 2008, Inorganic chemistry.

[13]  Duong Tuan Quang,et al.  Calixarene-derived fluorescent probes. , 2007, Chemical reviews.

[14]  So Young Lee,et al.  Calix[4]bis(thiacrown): assembly of an endocyclic disilver(I) complex and exocyclic 3D copper(I) coordination polymers. , 2007, Inorganic chemistry.

[15]  Ji-Eun Lee,et al.  Calix[4]thiacrowns as ditopic hosts for homo- and heterobinuclear accommodation: first report of a chopsticks-type pi-coordination. , 2007, Organic letters.

[16]  Jae Sang Kim,et al.  A poly(bicyclic dimer) and a cyclic tetramer : Ligand isomerism of S2O2 macrocycles during the assembly of supramolecular silver(I) complexes , 2006 .

[17]  R. Rogers,et al.  Exploring control of cadmium halide coordination polymers via control of cadmium(II) coordination sites utilizing short multidentate ligands , 2006 .

[18]  Jae Sang Kim,et al.  Assembly of a heterobinuclear 2-D network: a rare example of endo- and exocyclic coordination of Pd(II)/Ag(I) in a single macrocycle. , 2006, Inorganic chemistry.

[19]  Ji-Eun Lee,et al.  Exo-coordination-based supramolecular silver(I) complexes of S2O macrocycles: effect of ligand isomerism on the structural diversity. , 2006, Inorganic chemistry.

[20]  D. VanDerveer,et al.  Cationic five-coordinate Pt(II) complexes as donors in the formation of Pt-->Ag dative bonds. , 2005, Inorganic chemistry.

[21]  M. Vetrichelvan,et al.  3,11,19-Trithia[3.3.3]pyridinophane: Structural Diversity in Its Transition Metal Complexes , 2004 .

[22]  W. M. Leevy,et al.  Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. , 2004, Chemical reviews.

[23]  S. Mirzadeh,et al.  Selectivity of calix[4]arene-bis(benzocrown-6) in the complexation and transport of francium ion. , 2003, Journal of the American Chemical Society.

[24]  Jongchul Kwon,et al.  Novel-1,3-Alternate Calix[4]thiacrown Ethers , 2002 .

[25]  S. Shinkai,et al.  Silver ion oscillation through calix[4]azacrown tube , 2001 .

[26]  Lee,et al.  Heterogeneous binuclear complexation of 1,3-alternate Calix , 2000, The Journal of organic chemistry.

[27]  Z. Asfari,et al.  Two novel 1,3-calix[4]azacrowns , 2000 .

[28]  T. Kaden Dinuclear metal complexes of bis-macrocycles , 1999 .

[29]  A. Ohki,et al.  Cesium-ion selective electrodes based on calix[4]arene dibenzocrown ethers. , 1999, Talanta.

[30]  L. Lindoy HEAVY METAL ION CHEMISTRY OF LINKED MACROCYCLIC SYSTEMS INCORPORATING OXYGEN AND/OR SULFUR IN THEIR DONOR SETS , 1998 .

[31]  P. Svensson,et al.  Metal iodides in polyiodide networks. The structural chemistry of CdI2 with an excess of iodine , 1998 .

[32]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[33]  R. Rogers,et al.  Crown ether mediated cadmium halide dimers and polymers , 1996 .

[34]  Z. Asfari,et al.  BINDING PROPERTIES OF CALIX4-BIS-CROWNS TOWARDS ALKALI CATIONS , 1996 .

[35]  Z. Asfari,et al.  Synthesis of two calix[4]arenes constrained to a 1,3-alternate conformation by diaza-benzo crown ether bridging , 1994 .

[36]  S. Shinkai,et al.  On the Origin of High Ionophoricity of 1,3-Alternate Calix[4]arenes: .pi.-donor Participation in Complexation of Cations and Evidence for Metal-Tunneling through the Calix[4]arene Cavity , 1994 .

[37]  C. Sunderland,et al.  Synthesis, characterization and crystal structures of 1,7-dioxa-4-thia-10-azacyclododecane ([12]aneNO2S) and [Hg([12]aneNO2S)(NO3)2] , 1993 .

[38]  R. M. Izatt,et al.  Macropolycyclic Polyethers (Cages) and Related Compounds , 1992 .

[39]  R. Abidi,et al.  Synthesis and complexing properties of a double-calix[4]arene crown ether , 1992 .

[40]  A. Blake,et al.  On the transport and selective complexation of silver(I) by mixed thioether–oxa crowns. The single crystal X-ray structures of [Agn([15]aneS2O3)n](PF6)n and [Ag2([15]aneS2O3)3](PF6)2([15]aneS2O3= 1,4,7-trioxa-10,13-dithiacyclopentadecane) , 1992 .

[41]  X. Bu,et al.  Structure of di[3,4;3',4'-bis(ethylenedithio)-2,2',5,5'-tetrathiafulvalenium] di-μ-iodo-bis[diiodocadmate(II)], (BEDT-TTF)2[Cd2I6] , 1991 .

[42]  Charles J. Pedersen,et al.  Cyclic polyethers and their complexes with metal salts , 1967 .

[43]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .