Chemosensory pathways, motility and development in Myxococcus xanthus

The complex life cycle of Myxococcus xanthus includes predation, swarming, fruiting-body formation and sporulation. The genome of M. xanthus is large and comprises an estimated 7,400 open reading frames, of which approximately 605 code for regulatory genes. These include eight clusters of chemotaxis-like genes that define eight chemosensory pathways, most of which have dedicated functions. Although many of these chemosensory pathways have a role in controlling motility, at least two of these pathways control gene expression during development.

[1]  D. Zusman,et al.  "Frizzy" mutants: a new class of aggregation-defective developmental mutants of Myxococcus xanthus , 1982, Journal of bacteriology.

[2]  M. McBride Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. , 2001, Annual review of microbiology.

[3]  D. Kaiser,et al.  Intercellular C-signaling and the traveling waves of Myxococcus. , 1994, Genes & development.

[4]  Ruifeng Yang,et al.  AglZ Is a Filament-Forming Coiled-Coil Protein Required for Adventurous Gliding Motility of Myxococcus xanthus , 2004, Journal of bacteriology.

[5]  E. Hoiczyk,et al.  How Myxobacteria Glide , 2002, Current Biology.

[6]  W. Shi,et al.  A CheW Homologue Is Required for Myxococcus xanthus Fruiting Body Development, Social Gliding Motility, and Fibril Biogenesis , 2002, Journal of bacteriology.

[7]  D. Kaiser,et al.  Gliding motility in Myxococcus xanthus: mgl locus, RNA, and predicted protein products , 1989, Journal of Bacteriology.

[8]  J P Armitage,et al.  TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm , 2002, Molecular microbiology.

[9]  P. Hartzell Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Z. Yang,et al.  Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Berg,et al.  Temporal comparisons in bacterial chemotaxis. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Zusman,et al.  FrzCD, a methyl-accepting taxis protein from Myxococcus xanthus, shows modulated methylation during fruiting body formation , 1993, Journal of bacteriology.

[13]  M. Homma,et al.  Chemotactic Adaptation Is Altered by Changes in the Carboxy-Terminal Sequence Conserved among the Major Methyl-Accepting Chemoreceptors , 1998, Journal of bacteriology.

[14]  C. Bauer,et al.  A che‐like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum , 2005, Molecular microbiology.

[15]  D. Zusman,et al.  "Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Zusman,et al.  The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Kaiser,et al.  Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[18]  H. Kaplan,et al.  Identification and Characterization of Genes Required for Early Myxococcus xanthus Developmental Gene Expression , 2000, Journal of bacteriology.

[19]  J. Armitage,et al.  Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? , 1997, Microbiology.

[20]  N. Caberoy,et al.  Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. , 2004, Microbiology.

[21]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[22]  David A. D'Argenio,et al.  Drosophilaas a Model Host forPseudomonas aeruginosaInfection , 2001, Journal of bacteriology.

[23]  H. Ohtake,et al.  Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. , 1999, Bioscience, biotechnology, and biochemistry.

[24]  L Søgaard-Andersen,et al.  The FruA signal transduction protein provides a checkpoint for the temporal co‐ordination of inter‐ cellular signals in Myxococcus xanthus development , 1998, Molecular microbiology.

[25]  L. Shimkets,et al.  The Dif chemosensory pathway is directly involved in phosphatidylethanolamine sensory transduction in Myxococcus xanthus , 2005, Molecular microbiology.

[26]  D. Kaiser A microbial genetic journey. , 2006, Annual review of microbiology.

[27]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Lotte Søgaard-Andersen,et al.  Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus , 2003, Molecular microbiology.

[29]  Qian Xu,et al.  Nitrate-Dependent Activation of the Dif Signaling Pathway of Myxococcus xanthus Mediated by a NarX-DifA Interspecies Chimera , 2005, Journal of bacteriology.

[30]  Patricia J Keely,et al.  Focal adhesion regulation of cell behavior. , 2004, Biochimica et biophysica acta.

[31]  D. Zusman,et al.  Motility in Myxococcus xanthus and its role in developmental aggregation. , 1999, Current opinion in microbiology.

[32]  J. Mattick,et al.  Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa , 2004, Molecular microbiology.

[33]  T. Mignot,et al.  The elusive engine in Myxococcus xanthus gliding motility , 2007, Cellular and Molecular Life Sciences.

[34]  D. Botstein,et al.  Yeast proteins associated with microtubules in vitro and in vivo. , 1992, Molecular biology of the cell.

[35]  G. Oster,et al.  The Motors Powering A-Motility in Myxococcus xanthus Are Distributed along the Cell Body , 2007, Journal of bacteriology.

[36]  Zhaomin Yang,et al.  Myxococcus xanthus Chemotaxis Homologs DifD and DifG Negatively Regulate Fibril Polysaccharide Production , 2004, Journal of bacteriology.

[37]  T. Mignot,et al.  Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus , 2007, Molecular microbiology.

[38]  L. Shimkets,et al.  Myxococcus xanthus fibril appendages are essential for excitation by a phospholipid attractant. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  D. Bray,et al.  Receptor clustering as a cellular mechanism to control sensitivity , 1998, Nature.

[40]  J. Stock,et al.  Reconstitution of the bacterial chemotaxis signal transduction system from purified components. , 1991, The Journal of biological chemistry.

[41]  L. Shapiro,et al.  Genetic analysis of a temporally transcribed chemotaxis gene cluster in Caulobacter crescentus. , 1991, Genetics.

[42]  M. Dworkin,et al.  Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus , 1977, Journal of bacteriology.

[43]  D. Oesterhelt,et al.  Morphology, function and isolation of halobacterial flagella. , 1984, Journal of molecular biology.

[44]  H. Vlamakis,et al.  The Che4 pathway of Myxococcus xanthus regulates type IV pilus‐mediated motility , 2004, Molecular microbiology.

[45]  C. Bauer,et al.  Analysis of a chemotaxis operon from Rhodospirillum centenum , 1997, Journal of bacteriology.

[46]  B. Scharf,et al.  Functional Analysis of Nine Putative Chemoreceptor Proteins in Sinorhizobium meliloti , 2006, Journal of bacteriology.

[47]  J. Stock,et al.  Signal transduction in bacterial chemotaxis. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  H. Reichenbach,et al.  The ecology of the myxobacteria. , 1999, Environmental microbiology.

[49]  W. Shi,et al.  Analyses of mrp Genes during Myxococcus xanthus Development , 2001, Journal of bacteriology.

[50]  Social motility in Myxococcus xanthus requires FrzS, a protein with an extensive coiled‐coil domain , 2000, Molecular microbiology.

[51]  Jonathan Hodgkin,et al.  Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement , 2004, Molecular and General Genetics MGG.

[52]  L. Shimkets,et al.  An Extracellular Matrix-Associated Zinc Metalloprotease Is Required for Dilauroyl Phosphatidylethanolamine Chemotactic Excitation in Myxococcus xanthus , 2002, Journal of bacteriology.

[53]  C. Bauer,et al.  Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components , 1997, Journal of bacteriology.

[54]  E. Jahn Beiträge zur botanischen Protistologie , 1924 .

[55]  D. Kaiser,et al.  Evolution of sensory complexity recorded in a myxobacterial genome , 2006, Proceedings of the National Academy of Sciences.

[56]  D. Zusman,et al.  Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus , 1991, Journal of bacteriology.

[57]  J. S. Parkinson,et al.  Collaborative signaling by bacterial chemoreceptors. , 2005, Current opinion in microbiology.

[58]  D. Bhaya Light matters: phototaxis and signal transduction in unicellular cyanobacteria , 2004, Molecular microbiology.

[59]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Brendan W. Wren,et al.  Helicobacter pylori Possesses Two CheY Response Regulators and a Histidine Kinase Sensor, CheA, Which Are Essential for Chemotaxis and Colonization of the Gastric Mucosa , 2000, Infection and Immunity.

[61]  M Welch,et al.  Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  John Neu,et al.  Accordion waves in Myxococcus xanthus , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  T. Speed,et al.  Regulation of apicomplexan actin-based motility , 2006, Nature Reviews Microbiology.

[64]  M. Goodwin,et al.  Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. , 2001, Microbiology.

[65]  I. Zhulin,et al.  The superfamily of chemotaxis transducers: from physiology to genomics and back. , 2001, Advances in microbial physiology.

[66]  W. Shi,et al.  Genetic Studies of mrp, a Locus Essential for Cellular Aggregation and Sporulation of Myxococcus xanthus , 2001, Journal of bacteriology.

[67]  L. Shapiro,et al.  Polar location of the chemoreceptor complex in the Escherichia coli cell. , 1993, Science.

[68]  L. Shimkets,et al.  Suppression of a signaling defect during Myxococcus xanthus development , 1996, Journal of bacteriology.

[69]  D. Zusman,et al.  Evidence that the Myxococcus xanthus frz genes are developmentally regulated , 1989, Journal of bacteriology.

[70]  D. Zusman,et al.  "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Zusman,et al.  Chemotaxis plays a role in the social behaviour of Myxococcus xanthus , 1993, Molecular microbiology.

[72]  John R. Kirby,et al.  Rippling Is a Predatory Behavior in Myxococcus xanthus , 2006, Journal of bacteriology.

[73]  L. Shimkets,et al.  Inhibition of cell-cell interactions in Myxococcus xanthus by congo red , 1988, Journal of bacteriology.

[74]  D. Wemmer,et al.  An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS , 2007, Molecular microbiology.

[75]  Erinna F. Lee,et al.  Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility , 2022 .

[76]  L. Shimkets,et al.  Myxococcus xanthus dif Genes Are Required for Biogenesis of Cell Surface Fibrils Essential for Social Gliding Motility , 2000, Journal of bacteriology.

[77]  L. Shimkets Intercellular signaling during fruiting-body development of Myxococcus xanthus. , 1999, Annual review of microbiology.

[78]  J. Kirby,et al.  Chemosensory regulation of developmental gene expression in Myxococcus xanthus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Dworkin,et al.  Cell density-dependent growth of Myxococcus xanthus on casein , 1977, Journal of bacteriology.

[80]  Hong Sun,et al.  Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[81]  H. Vlamakis,et al.  FrzZ, a dual CheY‐like response regulator, functions as an output for the Frz chemosensory pathway of Myxococcus xanthus , 2007, Molecular microbiology.

[82]  P. Graumann Cytoskeletal elements in bacteria. , 2004, Current opinion in microbiology.

[83]  D. Zusman,et al.  Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. , 1996, FEMS microbiology letters.

[84]  D. Kaiser,et al.  Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Dale Kaiser,et al.  Coupling cell movement to multicellular development in myxobacteria , 2003, Nature Reviews Microbiology.

[86]  D. Kaiser,et al.  A ς54 Activator Protein Necessary for Spore Differentiation within the Fruiting Body ofMyxococcus xanthus , 2000, Journal of bacteriology.

[87]  D. Kaiser,et al.  Type IV pili and cell motility , 1999, Molecular microbiology.

[88]  W. Shi,et al.  Methylation of FrzCD Defines a Discrete Step in the Developmental Program of Myxococcus xanthus , 1998, Journal of bacteriology.

[89]  Lotte Søgaard-Andersen,et al.  The DevT Protein Stimulates Synthesis of FruA, a Signal Transduction Protein Required for Fruiting Body Morphogenesis in Myxococcus xanthus , 2002, Journal of bacteriology.

[90]  M. Bowden,et al.  The Myxococcus xanthus lipopolysaccharide O‐antigen is required for social motility and multicellular development , 1998, Molecular microbiology.

[91]  W. Shi,et al.  Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system , 2000, Current Biology.

[92]  Qian Xu,et al.  Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation , 2006, Molecular microbiology.

[93]  D. DeRosier,et al.  Self-assembly of receptor/signaling complexes in bacterial chemotaxis , 2006, Proceedings of the National Academy of Sciences.

[94]  Zhuo Li,et al.  Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system , 2005, Archives of Microbiology.

[95]  R. Melano,et al.  The Helicobacter pylori Chemotaxis Receptor TlpB (HP0103) Is Required for pH Taxis and for Colonization of the Gastric Mucosa , 2006, Journal of bacteriology.

[96]  L. Shimkets,et al.  Lipid chemotaxis and signal transduction in Myxococcus xanthus. , 2001, Trends in microbiology.

[97]  L. Shimkets,et al.  Phospholipid directed motility of surface‐motile bacteria , 2006, Molecular microbiology.

[98]  K. Foster Sociobiology: The Phoenix effect , 2006, Nature.

[99]  R. Schmitt,et al.  Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti , 2005, Molecular microbiology.

[100]  J. Kirby,et al.  Multicellular Development in Myxococcus xanthus Is Stimulated by Predator-Prey Interactions , 2007, Journal of bacteriology.

[101]  W. Shi,et al.  A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility , 1998, Molecular microbiology.

[102]  Roy D. Welch,et al.  Pattern formation and traveling waves in myxobacteria: Theory and modeling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Dale Kaiser,et al.  Signaling in myxobacteria. , 2004, Annual review of microbiology.

[104]  J. Stock,et al.  Receptor Methylation Controls the Magnitude of Stimulus-Response Coupling in Bacterial Chemotaxis* , 2002, The Journal of Biological Chemistry.

[105]  D. Eide,et al.  Myxococcus xanthus Does Not Respond Chemotactically to Moderate Concentration Gradients , 1983, Journal of bacteriology.

[106]  Lotte Søgaard-Andersen,et al.  Coupling of multicellular morphogenesis and cellular differentiation by an unusual hybrid histidine protein kinase in Myxococcus xanthus , 2005, Molecular microbiology.