Nonanomalous realism-based measure of nonlocality

Based on a recently proposed model of physical reality and an underlying criterion of nonlocality for contexts [A. L. O. Bilobran and R. M. Angelo, Europhys. Lett. 112, 40005 (2015)] we introduce a realism-based quantifier of nonlocality for bipartite quantum states. We prove that this measure reduces to entanglement for pure states, thus being free of anomalies in arbitrary dimensions, and identify the class of states with null realism-based nonlocality. Then, we show that such a notion of nonlocality can be positioned at the lowest level in the hierarchy of quantumness quantifiers, meaning that it can occur even for Bell-local states. These results open a new perspective for nonlocality studies.