Fourier analysis of schwarz alternating methods for piecewise hermite bicubic orthogonal spline collocation

The rates of convergence of two Schwarz alternating methods are analyzed for the iterative solution of a discrete problem which arises when orthogonal spline collocation with piecewise Hermite bicubics is applied to the Dirichlet problem for Poisson's equation on a rectangle. In the first method, the rectangle is divided into two overlapping subrectangles, while three overlapping subrectangles are used in the second method. Fourier analysis is used to obtain explicit formulas for the convergence factors by which theH1-norm of the errors is reduced in one iteration of the Schwarz methods. It is shown numerically that while these factors depend on the size of overlap, they are independent of the partition stepsize. Results of numerical experiments are presented which confirm the established rates of convergence of the Schwarz methods.