Functional integration and inference in the brain

[1]  C. Price The functional anatomy of word comprehension and production , 1998, Trends in Cognitive Sciences.

[2]  T. Shallice,et al.  Deep Dyslexia: A Case Study of , 1993 .

[3]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[4]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[5]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[6]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[7]  W. Singer,et al.  In search of common foundations for cortical computation , 1997, Behavioral and Brain Sciences.

[8]  Karl J. Friston,et al.  Attentional modulation of effective connectivity from V2 to V5/MT in humans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Karl J. Friston,et al.  The colour centre in the cerebral cortex of man , 1989, Nature.

[10]  Richard S. J. Frackowiak,et al.  Cerebral Oxygen Metabolism and Blood Flow in Human Cerebral Ischemic Infarction , 1982, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[12]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[13]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[14]  P. Schiller,et al.  Effect of cooling area 18 on striate cortex cells in the squirrel monkey. , 1982, Journal of neurophysiology.

[15]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[16]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[17]  Karl J. Friston,et al.  Principal component analysis learning algorithms: a neurobiological analysis , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[19]  D. Benson,et al.  Disconnection syndromes , 1993, Neurology.

[20]  A. Clark,et al.  Trading spaces: Computation, representation, and the limits of uninformed learning , 1997, Behavioral and Brain Sciences.

[21]  Anthony Randal McIntosh,et al.  Towards a network theory of cognition , 2000, Neural Networks.

[22]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[23]  C. G. Phillips,et al.  Localization of function in the cerebral cortex. Past, present and future. , 1984, Brain : a journal of neurology.

[24]  Mark S. Seidenberg,et al.  Category-Specific Semantic Deficits in Focal and Widespread Brain Damage: A Computational Account , 1998, Journal of Cognitive Neuroscience.

[25]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[26]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[27]  S. Zeki Vision: The motion pathways of the visual cortex , 1991 .

[28]  P M Grasby,et al.  Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. , 1995, Brain : a journal of neurology.

[29]  Jan de Leeuw,et al.  Nonlinear Principal Component Analysis , 1982 .

[30]  Karl J. Friston,et al.  The Trouble with Cognitive Subtraction , 1996, NeuroImage.

[31]  Juha Karhunen,et al.  Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.

[32]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[33]  Danny Keogan,et al.  Distributed hierarchical processing , 2002, Photomask Japan.

[34]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[35]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  Jim Kay,et al.  Activation Functions, Computational Goals, and Learning Rules for Local Processors with Contextual Guidance , 1997, Neural Computation.

[37]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[38]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[39]  Mitsuo Kawato,et al.  A forward-inverse optics model of reciprocal connections between visual cortical areas , 1993 .

[40]  D. Mackay The Epistemological Problem for Automata , 1956 .

[41]  M. Posner,et al.  Positron Emission Tomographic Studies of the Processing of Singe Words , 1989, Journal of Cognitive Neuroscience.

[42]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[43]  E. Warrington,et al.  Categories of knowledge. Further fractionations and an attempted integration. , 1987, Brain : a journal of neurology.

[44]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[45]  Karl J. Friston,et al.  Dynamic Diaschisis: Anatomically Remote and Context-Sensitive Human Brain Lesions , 2001, Journal of Cognitive Neuroscience.

[46]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[47]  福島 邦彦 A Neural Network Model for Selective Attention in Visual Pattern Recognition , 1987 .

[48]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[49]  Geoffrey E. Hinton,et al.  Lesioning an attractor network: investigations of acquired dyslexia. , 1991, Psychological review.

[50]  Christian Jutten,et al.  Nonlinear source separation: the post-nonlinear mixtures , 1997, ESANN.

[51]  Karl J. Friston,et al.  How the brain learns to see objects and faces in an impoverished context , 1997, Nature.

[52]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[53]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[54]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[55]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[56]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[57]  Karl J. Friston,et al.  Value-dependent selection in the brain: Simulation in a synthetic neural model , 1994, Neuroscience.

[58]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  Gary G. R. Green,et al.  Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network , 1994, Biological Cybernetics.

[60]  D. Perkel,et al.  Simultaneously Recorded Trains of Action Potentials: Analysis and Functional Interpretation , 1969, Science.

[61]  E. Warrington,et al.  Category specific access dysphasia. , 2002, Brain : a journal of neurology.

[62]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[63]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[64]  Localisation of function. , 1898 .

[65]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[66]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[67]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[68]  Richard S. Sutton,et al.  Time-Derivative Models of Pavlovian Reinforcement , 1990 .

[69]  H Preißl,et al.  Dynamics of activity and connectivity in physiological neuronal networks , 1991 .

[70]  J. Bullier,et al.  Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. , 1989, Journal of neurophysiology.

[71]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[72]  Geoffrey E. Hinton,et al.  Parallel visual computation , 1983, Nature.

[73]  Karl J. Friston,et al.  Entropy and cortical activity: information theory and PET findings. , 1992, Cerebral cortex.

[74]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[75]  M. Gabriel,et al.  Learning and Computational Neuroscience: Foundations of Adaptive Networks , 1990 .

[76]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[77]  David C. Plaut,et al.  Deep Dyslexia: A Case Study of , 1993 .

[78]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[79]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[80]  G. Edelman Neural Darwinism: Selection and reentrant signaling in higher brain function , 1993, Neuron.

[81]  Françoise Lamnabhi-Lagarrigue,et al.  An algebraic approach to nonlinear functional expansions , 1983 .

[82]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[83]  Gustavo Deco,et al.  Predictive Coding in the Visual Cortex by a Recurrent Network with Gabor Receptive Fields , 2001, Neural Processing Letters.

[84]  James L. McClelland,et al.  A computational model of semantic memory impairment: modality specificity and emergent category specificity. , 1991, Journal of experimental psychology. General.

[85]  R. Nebes Semantic memory in Alzheimer's disease. , 1989, Psychological bulletin.

[86]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[87]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[88]  Karl J. Friston,et al.  The labile brain. III. Transients and spatio-temporal receptive fields. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[89]  Geoffrey E. Hinton,et al.  Lesioning an attractor network: investigations of acquired dyslexia , 1991 .

[90]  T. McAvoy,et al.  Nonlinear principal component analysis—Based on principal curves and neural networks , 1996 .

[91]  W. Freeman,et al.  Chaotic Oscillations and the Genesis of Meaning in Cerebral Cortex , 1994 .

[92]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[93]  W. Singer,et al.  Temporal Coding in the Brain , 1994, Research and Perspectives in Neurosciences.

[94]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .