Dopamine-dependent plasticity of corticostriatal synapses

[1]  J. Bargas,et al.  Inhibitory action of dopamine involves a subthreshold Cs+-sensitive conductance in neostriatal neurons , 1996, Experimental Brain Research.

[2]  V. Russell,et al.  Regional distribution of monoamines and dopamine D1-and D2-receptors in the striatum of the rat , 1992, Neurochemical Research.

[3]  B. Hyland,et al.  Firing modes of midbrain dopamine cells in the freely moving rat , 2002, Neuroscience.

[4]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[5]  J. Galen Buckwalter,et al.  Regional differences in the expression of corticostriatal synaptic plasticity , 2001, Neuroscience.

[6]  P. Calabresi,et al.  Selective involvement of mGlu1 receptors in corticostriatal LTD , 2001, Neuropharmacology.

[7]  P. Calabresi,et al.  Dopaminergic control of synaptic plasticity in the dorsal striatum , 2001, The European journal of neuroscience.

[8]  M. Low,et al.  Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. , 2001, Journal of neurophysiology.

[9]  K. Tang,et al.  Dopamine-dependent synaptic plasticity in striatum during in vivo development. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Zigmond,et al.  Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum , 2001, Neuroscience.

[11]  J. Wickens,et al.  Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. , 2001, Journal of neurophysiology.

[12]  G. Akopian,et al.  Functional state of corticostriatal synapses determines their expression of short‐ and long‐term plasticity , 2000, Synapse.

[13]  J. Spencer,et al.  Bi-directional changes in synaptic plasticity induced at corticostriatal synapses in vitro , 2000, Experimental Brain Research.

[14]  W. Schultz Multiple reward signals in the brain , 2000, Nature Reviews Neuroscience.

[15]  K. Doya Complementary roles of basal ganglia and cerebellum in learning and motor control , 2000, Current Opinion in Neurobiology.

[16]  P. Greengard,et al.  Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity , 2000, The Journal of Neuroscience.

[17]  J. Wickens,et al.  Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo , 2000, Neuroscience.

[18]  J. Partridge,et al.  Regional and postnatal heterogeneity of activity-dependent long-term changes in synaptic efficacy in the dorsal striatum. , 2000, Journal of neurophysiology.

[19]  Mark J. Thomas,et al.  Modulation of Long-Term Depression by Dopamine in the Mesolimbic System , 2000, The Journal of Neuroscience.

[20]  J. Wickens,et al.  Brain Dynamics and the Striatal Complex , 2000 .

[21]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[22]  P. Calabresi,et al.  Unilateral dopamine denervation blocks corticostriatal LTP. , 1999, Journal of neurophysiology.

[23]  P. Calabresi,et al.  Glutamate-Triggered Events Inducing Corticostriatal Long-Term Depression , 1999, The Journal of Neuroscience.

[24]  S. Charpier,et al.  In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex , 1999, Neuroscience.

[25]  W. Schultz,et al.  A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task , 1999, Neuroscience.

[26]  H. Nakanishi,et al.  Expression of long-term potentiation of the striatum in methamphetamine-sensitized rats , 1999, Neuroscience Letters.

[27]  J. Walsh,et al.  Modulation of long-term synaptic plasticity at excitatory striatal synapses , 1999, Neuroscience.

[28]  P. Calabresi,et al.  A Critical Role of the Nitric Oxide/cGMP Pathway in Corticostriatal Long-Term Depression , 1999, The Journal of Neuroscience.

[29]  F. Tarazi,et al.  Regional localization of dopamine and ionotropic glutamate receptor subtypes in striatolimbic brain regions , 1999, Journal of neuroscience research.

[30]  P. Calabresi,et al.  Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP , 1999, Neuropharmacology.

[31]  F. Tarazi,et al.  Localization of ionotropic glutamate receptors in caudate‐putamen and nucleus accumbens septi of rat brain: Comparison of NMDA, AMPA, and kainate receptors , 1998, Synapse.

[32]  J. Hollerman,et al.  Reward prediction in primate basal ganglia and frontal cortex , 1998, Neuropharmacology.

[33]  J. Wickens,et al.  Effects of potassium channel blockers on synaptic plasticity in the corticostriatal pathway , 1998, Neuropharmacology.

[34]  R. Malenka,et al.  Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. , 1998, Journal of neurophysiology.

[35]  C. Cepeda,et al.  Dopamine and N-Methyl-D- Aspartate Receptor Interactions in the Neostriatum , 1998, Developmental Neuroscience.

[36]  G Bernardi,et al.  Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. , 1998, The European journal of neuroscience.

[37]  C. Cepeda,et al.  Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. , 1998, Journal of neurophysiology.

[38]  M. Umemiya,et al.  Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. , 1997, Journal of neurophysiology.

[39]  F. Gonon Prolonged and Extrasynaptic Excitatory Action of Dopamine Mediated by D1 Receptors in the Rat Striatum In Vivo , 1997, The Journal of Neuroscience.

[40]  S. Cragg,et al.  Differential Autoreceptor Control of Somatodendritic and Axon Terminal Dopamine Release in Substantia Nigra, Ventral Tegmental Area, and Striatum , 1997, The Journal of Neuroscience.

[41]  B. Fredholm,et al.  Electrically‐evoked dopamine and acetylcholine release from rat striatal slices perfused without magnesium: regulation by glutamate acting on NMDA receptors , 1997, British journal of pharmacology.

[42]  S. Charpier,et al.  In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  P. Calabresi,et al.  Abnormal Synaptic Plasticity in the Striatum of Mice Lacking Dopamine D2 Receptors , 1997, The Journal of Neuroscience.

[44]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[45]  Charles J. Wilson,et al.  Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. , 1997, Journal of neurophysiology.

[46]  J. Tepper,et al.  Functional Roles of Dopamine D2 and D3Autoreceptors on Nigrostriatal Neurons Analyzed by Antisense KnockdownIn Vivo , 1997, The Journal of Neuroscience.

[47]  D. Lovinger,et al.  Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  P. Garris,et al.  Real‐Time Measurement of Electrically Evoked Extracellular Dopamine in the Striatum of Freely Moving Rats , 1997, Journal of neurochemistry.

[49]  V. Pickel,et al.  Ultrastructural immunocytochemical localization of the N-methyl-d-aspartate receptor and tyrosine hydroxylase in the shell of the rat nucleus accumbens , 1996, Brain Research.

[50]  H. C. Cromwell,et al.  Neuromodulatory actions of dopamine on synaptically‐evoked neostriatal responses in slices , 1996, Synapse.

[51]  S. Young,et al.  Glutamate-dependent long-term presynaptic changes in corticostriatal excitability , 1996, Neuroscience.

[52]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  P. Dayan,et al.  A framework for mesencephalic dopamine systems based on predictive Hebbian learning , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[55]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[56]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[57]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[58]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[59]  K. Hsu,et al.  Presynaptic D2 dopaminergic receptors mediate inhibition of excitatory synaptic transmission in rat neostriatum , 1995, Brain Research.

[60]  P. Calabresi,et al.  Transmitter Release Associated with Long‐term Synaptic Depression in Rat Corticostriatal Slices , 1995, The European journal of neuroscience.

[61]  C. Wilson,et al.  Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  B. Bloch,et al.  D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum , 1995, The Journal of comparative neurology.

[63]  M. Ochi,et al.  Long-term enhancement of dopamine release by high frequency tetanic stimulation via aN-methyl-d-aspartate-receptor-mediated pathway in rat striatum , 1995, Neuroscience.

[64]  P. Greengard,et al.  Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons , 1995, Neuron.

[65]  J. Wickens,et al.  Cellular models of reinforcement. , 1995 .

[66]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[67]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[68]  P. Calabresi,et al.  Post-receptor mechanisms underlying striatal long-term depression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  J. Wickens A Theory of the Striatum , 1993 .

[70]  J. Walsh,et al.  Synaptic activation of N-methyl-d-aspartate receptors induces short-term potentiation at excitatory synapses in the striatum of the rat , 1993, Neuroscience.

[71]  D. Lovinger,et al.  Short- and long-term synaptic depression in rat neostriatum. , 1993, Journal of neurophysiology.

[72]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  C. Cepeda,et al.  Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Walsh Depression of excitatory synaptic input in rat striatal neurons , 1993, Brain Research.

[75]  F. H. Lopes da Silva,et al.  Synaptic Plasticity in an In Vitro Slice Preparation of the Rat Nucleus Accumbens , 1993, The European journal of neuroscience.

[76]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[77]  D. Surmeier,et al.  D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. , 1993, Progress in brain research.

[78]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  P. Calabresi,et al.  Long‐term Potentiation in the Striatum is Unmasked by Removing the Voltage‐dependent Magnesium Block of NMDA Receptor Channels , 1992, The European journal of neuroscience.

[80]  P. Calabresi,et al.  Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum , 1992, Neuroscience Letters.

[81]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[82]  J. Desce,et al.  Glutamatergic Control of Dopamine Release in the Rat Striatum: Evidence for Presynaptic N‐Methyl‐D‐Aspartate Receptors on Dopaminergic Nerve Terminals , 1991, Journal of neurochemistry.

[83]  H. Perschak,et al.  In vivo release of endogenous glutamate and aspartate in the rat striatum during stimulation of the cortex , 1990, Neuroscience.

[84]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[85]  W. Singer,et al.  Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex , 1990, Nature.

[86]  A. Grace,et al.  Compensations after lesions of central dopaminergic neurons: some clinical and basic implications , 1990, Trends in Neurosciences.

[87]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[88]  L. Chiodo,et al.  Anesthetic influences on the basal acticity and pharmacological responsiveness of nigrostriatal dopamine neurons , 1990, Synapse.

[89]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[90]  J. Yeomans Two substrates for medial forebrain bundle self-stimulation: Myelinated axons and dopamine axons , 1989, Neuroscience & Biobehavioral Reviews.

[91]  J. H. Carlson,et al.  Acute reduction of dopamine levels alters responses of basal ganglia neurons to selective D-1 and D-2 dopamine receptor stimulation. , 1988, European journal of pharmacology.

[92]  F. J. White,et al.  Is stimulation of both D1 and D2 receptors necessary for the expression of dopamine-mediated behaviors? , 1988, Pharmacology Biochemistry and Behavior.

[93]  J. Millar,et al.  Accommodation of rat nigrostriatal dopamine neurones to high frequency electrical stimulation of the median forebrain bundle: In vivo voltammetric data , 1987, Neuroscience Letters.

[94]  L. Kerkérian,et al.  Modulatory Effect of Dopamine on High‐Affinity Glutamate Uptake in the Rat Striatum , 1987, Journal of neurochemistry.

[95]  J. Joyce,et al.  Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: Localization to intrinsic neurons and not to neocortical afferents , 1987, Neuroscience.

[96]  P. Calabresi,et al.  Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement , 1987, Neuroscience.

[97]  R. Wightman,et al.  Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. , 1985, European journal of pharmacology.

[98]  P. Herrling Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat: Evidence for its mediation by quisqualateor kainate-receptors , 1985, Neuroscience.

[99]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[100]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: burst firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[101]  C. Y. Yim,et al.  Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra , 1984, Brain Research.

[102]  J. Bouyer,et al.  Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum , 1984, Brain Research.

[103]  T. Kita,et al.  Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation , 1984, Brain Research.

[104]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[105]  M. Memo,et al.  Agonist-induced subsensitivity of adenylate cyclase coupled with a dopamine receptor in slices from rat corpus striatum. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[106]  E. Morrel,et al.  [Quantitative autoradiography]. , 1982, Acta histochemica. Supplementband.

[107]  Charles J. Wilson,et al.  Spontaneous firing patterns of identified spiny neurons in the rat neostriatum , 1981, Brain Research.

[108]  P. Somogyi,et al.  Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the golgi‐peroxidase transport‐degeneration procedure , 1981, The Journal of comparative neurology.

[109]  Robert Miller Meaning and Purpose in the Intact Brain , 1981 .

[110]  S. Snyder,et al.  Dopamine receptors localised on cerebral cortical afferents to rat corpus striatum , 1978, Nature.

[111]  P. Milner,et al.  Schedule control of behavior reinforced by electrical stimulation of the brain. , 1977, Science.

[112]  I. Divac,et al.  High affinity uptake of glutamate in terminals of corticostriatal axons , 1977, Nature.

[113]  J. B. Ranck,et al.  Which elements are excited in electrical stimulation of mammalian central nervous system: A review , 1975, Brain Research.

[114]  E. Valenstein,et al.  An evaluation of response rate as a measure of rewarding intracranial stimulation. , 1962, Journal of comparative and physiological psychology.

[115]  R. W. Reynolds The relationship between stimulation voltage and rate of hypothalamic self-stimulation in the rat. , 1958, Journal of comparative and physiological psychology.

[116]  James L Olds,et al.  Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. , 1954, Journal of comparative and physiological psychology.