SALT long-slit spectroscopy of CTS C30.10: two-component Mg II line

Context. Quasars can be used as a complementary tool to SN Ia to probe the distribution of dark energy in the Universe by measuring the time delay of the emission line with respect to the continuum. The understanding of the Mg II emission line structure is important for cosmological application and for the black hole mass measurements of intermediate redshift quasars. Aims. Knowing the shape of Mg II line and its variability allows for identifying which part of the line should be used to measure the time delay and the black hole mass. We thus aim at determining the structure and the variability of the Mg II line, as well as the underlying Fe II pseudo-continuum. Methods. We performed five spectroscopic observations of a quasar CTS C30.10 (z = 0.9000) with the SALT telescope between December 2012 and March 2014, and we studied the variations in the spectral shape in the 2700 A−2900 A rest frame. Results. We show that the Mg II line in this source consists of two kinematic components, which makes the source representative of type B quasars. Both components were modeled well with a Lorentzian shape, and they vary in a similar way. The Fe II contribution seems to be related only to the first (blue) Mg II component. Broad band spectral fitting instead favor the use of the whole line profile. The contribution of the narrow line region to Mg II is very low, below 2%. The Mg II variability is lower than the variability of the continuum, which is consistent with the simple reprocessing scenario. The variability level of CTS C30.10 and the measurement accuracy of the line and continuum is high enough to expect that further monitoring will allow the time delay between the Mg II line and continuum to be measured.

[1]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[2]  AN INTEGRATED TEXTBOOK FOR CONSERVATION GENETICS , 2003 .

[3]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[4]  J. Shields,et al.  Continuum and Emission-Line Strength Relations for a Large Active Galactic Nuclei Sample , 2002, astro-ph/0208348.

[5]  A. Sa̧dowski,et al.  Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1 , 2011, 1104.2734.

[6]  A. Laor,et al.  Line-driven winds and the UV turnover in AGN accretion discs , 2013, 1312.3556.

[7]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[8]  B. Punsly MULTI-EPOCH OBSERVATIONS OF THE RED WING EXCESS IN THE SPECTRUM OF 3C 279 , 2012, 1211.2619.

[9]  H. R. Miller,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 5: Variability of the ultraviolet continuum and emission lines of NGC 3783 , 1994 .

[10]  H. Ebeling,et al.  Absorption features in the quasar HS 1603 + 3820 II. Distance to the absorber obtained from photoionisation modelling , 2013, 1303.5004.

[11]  M. Dietrich,et al.  Fe II/Mg II Emission-Line Ratio in High-Redshift Quasars , 2003 .

[12]  A. Olmo,et al.  Is MgIIλ2800 a reliable virial broadening estimator for quasars , 2013, 1305.1096.

[13]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[14]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[15]  A. Olmo,et al.  LOW-IONIZATION OUTFLOWS IN HIGH EDDINGTON RATIO QUASARS , 2013, 1301.0520.

[16]  E. Verner,et al.  Modeling Fe II Emission and Revised Fe II (UV) Empirical Templates for the Seyfert 1 Galaxy I Zw 1 , 2008 .

[17]  Steven M. Crawford,et al.  PySALT: the SALT science pipeline , 2010, Astronomical Telescopes + Instrumentation.

[18]  Yue Shen,et al.  COMPARING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATORS FOR LUMINOUS QUASARS , 2012, 1203.0601.

[19]  T. Boroson,et al.  The UV Properties of the Narrow Line Quasar I Zwicky 1 , 1997 .

[20]  T. Davis,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI , 2011, 1109.4632.

[21]  P. Marziani,et al.  Quasars and their emission lines as cosmological probes , 2013, 1310.3143.

[22]  Research Center for the Early Universe,et al.  STATISTICAL PROPERTIES OF MULTI-EPOCH SPECTRAL VARIABILITY OF SDSS STRIPE 82 QUASARS , 2014, 1401.5074.

[23]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[24]  B. Tinsley,et al.  The Evolution of galaxies and stellar populations : conference at Yale University, May 19-21, 1977 , 1977 .

[25]  S. Hönig,et al.  DUST REVERBERATION MAPPING IN THE ERA OF BIG OPTICAL SURVEYS AND ITS COSMOLOGICAL APPLICATION , 2014, 1401.2999.

[26]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999 .

[27]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[28]  Boulder,et al.  Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Hydrodynamical Inviscid Case , 2002, astro-ph/0208517.

[29]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[30]  E. Branchini,et al.  A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY , 2014, 1404.2607.

[31]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[32]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[33]  B. Trakhtenbrot,et al.  Black Hole Growth to z = 2 - I: Improved Virial Methods for Measuring M_BH and L/L_Edd , 2012, 1209.1096.

[34]  B. Wilkes,et al.  The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars. II. Final Results , 1994, astro-ph/9609164.

[35]  T. O. S. University,et al.  The Mass of the Central Black Hole in the Seyfert Galaxy NGC 4151 , 2006, astro-ph/0605038.

[36]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[37]  A. Lawrence The UV peak in active galactic nuclei: a false continuum from blurred reflection? , 2011, 1110.0854.

[38]  Luis Carrasco,et al.  SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564 , 2012, 1207.1782.

[39]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg ii λ2800 EMISSION LINE , 2009, 0910.2848.

[40]  Granada,et al.  Comparing Hβ line profiles in the 4D Eigenvector 1 context , 2009, 0911.4220.

[41]  P. T. O'Brien,et al.  On the absence of broad MgII emission-line variability in NGC3516 during 1996. , 1997 .

[42]  P. Marziani,et al.  Highly accreting quasars: sample definition and possible cosmological implications , 2014, 1405.2727.

[43]  K. Korista,et al.  What the Optical Recombination Lines Can Tell Us about the Broad-Line Regions of Active Galactic Nuclei , 2004, astro-ph/0402506.

[44]  L. Ho,et al.  A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole , 2008, 0807.2059.

[45]  The DEEP Groth Strip Survey. VII. The Metallicity of Field Galaxies at 0.26 < z < 0.82 and the Evolution of the Luminosity-Metallicity Relation , 2003, astro-ph/0310346.

[46]  J. Baldwin,et al.  IMPLICATIONS OF INFALLING Fe ii-EMITTING CLOUDS IN ACTIVE GALACTIC NUCLEI: ANISOTROPIC PROPERTIES , 2009, 0911.1173.

[47]  J. McDowell,et al.  The environment of active galactic nuclei - I. A two-component broad emission line model. , 1988 .

[48]  S. Bianchi A new cosmological distance measure using AGN X-ray variability , 2014 .

[49]  India,et al.  THE 2013 RELEASE OF CLOUDY , 2013, 1302.4485.

[50]  X. I. O. D. Ong,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg II λ2800 EMISSION LINE , 2009 .

[51]  The soft x-ray properties of a complete sample of optically selected quasars. 1: First results , 1994, astro-ph/9609164.

[52]  P. Marziani,et al.  VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars II. Black hole mass and Eddington ratio , , 2004, 0812.0251.

[53]  Y. Yoshii,et al.  A NEW METHOD FOR MEASURING EXTRAGALACTIC DISTANCES , 2014, 1403.1693.

[54]  Wei Zheng,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I, an 8 month campaign of monitoring NGC 5548 with IUE , 1991 .

[55]  B. Tinsley,et al.  Evolution of galaxies and stellar populations , 1977 .

[56]  Granada,et al.  Detailed characterization of Hβ emission line profile in low‐z SDSS quasars , 2009, 0912.4306.

[57]  Yiqing Liu,et al.  THE CORRELATIONS BETWEEN OPTICAL VARIABILITY AND PHYSICAL PARAMETERS OF QUASARS IN SDSS STRIPE 82 , 2012, Proceedings of the International Astronomical Union.

[58]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[59]  L. Ho,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE XMM-COSMOS SAMPLE , 2012, 1209.1478.

[60]  R. Zamanov,et al.  Average Quasar Spectra in the Context of Eigenvector 1 , 2002, astro-ph/0201362.

[61]  Chinese Journal of Astronomy and Astrophysics manuscript no. , 2008 .

[62]  B. Wilkes,et al.  An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1 , 2001, astro-ph/0104320.

[63]  S. Lilly,et al.  MODELING THE DISTRIBUTION OF Mg ii ABSORBERS AROUND GALAXIES USING BACKGROUND GALAXIES AND QUASARS , 2012, 1211.3774.

[64]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[65]  Buell T. Jannuzi,et al.  The Ultraviolet Properties of the Narrow-Line Quasar I Zw 1 , 1997, astro-ph/9706264.

[66]  T. Tanabé,et al.  Fe II Emission in 14 Low-Redshift Quasars. I. Observations , 2006, astro-ph/0606040.

[67]  C. Fromm,et al.  THE ACCELERATING JET OF 3C 279 , 2012 .

[68]  Shai Kaspi,et al.  Reverberation Mapping of High-Luminosity Quasars: First Results , 2006, astro-ph/0612722.

[69]  L. Ho,et al.  TWO-COMPONENT STRUCTURE OF THE Hβ BROAD-LINE REGION IN QUASARS. I. EVIDENCE FROM SPECTRAL PRINCIPAL COMPONENT ANALYSIS , 2012, 1210.4187.

[70]  A. Udalski,et al.  SALT long-slit spectroscopy of LBQS 2113-4538: variability of the Mg II and Fe II component , 2013, 1308.3980.

[71]  J. Woo Mg ii LINE VARIABILITY OF HIGH-LUMINOSITY QUASARS , 2008, 0802.3705.

[72]  Lars Hernquist,et al.  CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION , 2010, 1006.3561.

[73]  D. Valls-Gabaud,et al.  Super-Eddington accreting massive black holes as long-lived cosmological standards. , 2013, Physical review letters.

[74]  Hongyan Zhou,et al.  A COMPARATIVE STUDY OF OPTICAL/ULTRAVIOLET VARIABILITY OF NARROW-LINE SEYFERT 1 AND BROAD-LINE SEYFERT 1 ACTIVE GALACTIC NUCLEI , 2013, 1301.4739.

[75]  A. Schwarzenberg-Czerny,et al.  Towards equation of state of dark energy from quasar monitoring: Reverberation strategy , 2012, 1212.0472.

[77]  Krzysztof Hryniewicz,et al.  The origin of the broad line region in active galactic nuclei , 2010, 1010.6201.

[78]  L. Popović,et al.  Long term variability of the Broad Emission Line profiles in AGN , 2009, 0908.2763.

[79]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[80]  D. Dultzin,et al.  C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei , 2007, 0705.1895.

[81]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[82]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[83]  A. Wandel,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999 .

[84]  C. Gaskell,et al.  OPTICAL VARIABILITY OF NARROW-LINE SEYFERT 1 GALAXIES , 2004, astro-ph/0403334.

[85]  Michael P. Smith,et al.  Prime Focus Imaging Spectrograph for the Southern African Large Telescope: optical design , 2003, SPIE Astronomical Telescopes + Instrumentation.

[86]  P. Veron,et al.  A spectrophotometric atlas of narrow-line seyfert 1 galaxies , 2001 .