Complex network analysis reveals novel essential properties of competition among individuals in an even-aged plant population

[1]  H. Muller‐Landau,et al.  The Effects of Density, Spatial Pattern, and Competitive Symmetry on Size Variation in Simulated Plant Populations , 2001, The American Naturalist.

[2]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[3]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[4]  Dynamic process, spatial pattern and species coexistence in plants , 1995, Folia Geobotanica.

[5]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[6]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[7]  C. Alados,et al.  Structure and spatial self-organization of semi-arid communities through plant-plant co-occurrence networks , 2011 .

[8]  Neo D. Martinez Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web , 1991 .

[9]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[10]  M. Yokozawa,et al.  Competition among plants can lead to an increase in aggregation of smaller plants around larger ones , 2015 .

[11]  Dirk Husmeier,et al.  Hierarchical Bayesian models in ecology: Reconstructing species interaction networks from non-homogeneous species abundance data , 2012, Ecol. Informatics.

[12]  Jacob Weiner,et al.  Including competitive asymmetry in measures of local interference in plant populations , 1989, Oecologia.

[13]  Jens Kattge,et al.  Estimation of parameters in complex 15N tracing models by Monte Carlo sampling , 2007 .

[14]  N. Brokaw,et al.  Niche versus chance and tree diversity in forest gaps. , 2000, Trends in ecology & evolution.

[15]  Hugo Saiz,et al.  Effect of livestock grazing in the partitions of a semiarid plant–plant spatial signed network , 2014 .

[16]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[17]  J. R. Wallis,et al.  Some ecological consequences of a computer model of forest growth , 1972 .

[18]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[19]  J. Bascompte,et al.  Ecological networks : beyond food webs Ecological networks – beyond food webs , 2008 .

[20]  Brian D. Fath,et al.  Examination of ecological networks , 2006 .

[21]  Marcus Kaiser,et al.  Spatial growth of real-world networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  K. Burns,et al.  A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale. , 2010, Ecology.

[23]  Manuel K. Schneider,et al.  Quantification of neighbourhood‐dependent plant growth by Bayesian hierarchical modelling , 2006 .

[24]  Michio Kondoh,et al.  Building trophic modules into a persistent food web , 2008, Proceedings of the National Academy of Sciences.

[25]  H. Akaike A new look at the statistical model identification , 1974 .

[26]  Anje-Margriet Neutel,et al.  Stability in Real Food Webs: Weak Links in Long Loops , 2002, Science.

[27]  I M Sokolov,et al.  Growing networks under geographical constraints. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  P. Burrough Data Analysis in Community and Landscape Ecology: Spatial aspects of ecological data , 1995 .

[29]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[30]  Jacob Weiner,et al.  Mechanisms determining the degree of size asymmetry in competition among plants , 1998, Oecologia.

[31]  K. Burns,et al.  Network properties of arboreal plants: Are epiphytes, mistletoes and lianas structured similarly? , 2009 .

[32]  J. Weiner,et al.  Asymmetric competition in plant populations. , 1990, Trends in ecology & evolution.

[33]  S. Pacala,et al.  Forest models defined by field measurements : Estimation, error analysis and dynamics , 1996 .

[34]  G. Yule,et al.  Some Statistics of Evolution and Geographical Distribution in Plants and Animals, and their Significance. , 1922, Nature.

[35]  Ricard V. Solé,et al.  Complexity and fragility in ecological networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[36]  A. L. Koch,et al.  The logarithm in biology. II. Distributions simulating the log-normal. , 1969, Journal of theoretical biology.

[37]  C. Alados,et al.  Plant-plant spatial association networks in gypsophilous communities: the influence of aridity and grazing and the role of gypsophytes in its structure , 2014 .

[38]  M. McCarthy Bayesian Methods for Ecology , 2007 .

[39]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[40]  Jens M. Olesen,et al.  Scaling down from species to individuals: a flower–visitation network between individual honeybees and thistle plants , 2011 .

[41]  Yukio Hayashi A Review of Recent Studies of Geographical Scale-Free Networks , 2005 .

[42]  Marc Barthelemy Crossover from scale-free to spatial networks , 2002 .

[43]  Liang Huang,et al.  Geographical networks: geographical effects on network properties , 2008 .

[44]  M. Yokozawa,et al.  Foliage Profile, Size Structure and Stem Diameter-Plant Height Relationship in Crowded Plant Populations , 1995 .

[45]  N. Shnerb,et al.  Facilitation, competition, and vegetation patchiness: from scale free distribution to patterns. , 2008, Journal of theoretical biology.

[46]  Toshihiko Hara,et al.  Effects of competition mode on spatial pattern dynamics in plant communities , 1998 .

[47]  Jens M. Olesen,et al.  Stability of modular structure in temporal cumulative plant–flower-visitor networks , 2012 .

[48]  Jacob Weiner,et al.  A neighborhood view of interactions among individual plants , 2000 .

[49]  K. Burns Network properties of an epiphyte metacommunity , 2007 .

[50]  Albert-László Barabási,et al.  Linked: The New Science of Networks , 2002 .

[51]  B. Krasnov,et al.  Species abundance and the distribution of specialization in host–parasite interaction networks , 2005 .

[52]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[53]  Andreas Wagner,et al.  USING NETWORK ANALYSIS TO CHARACTERIZE FOREST STRUCTURE , 2008 .

[54]  M. Fortin,et al.  Spatial Analysis: A Guide for Ecologists 1st edition , 2005 .

[55]  Ferenc Jordán,et al.  Network ecology: Topological constraints on ecosystem dynamics , 2004 .

[56]  Márcio S Araújo,et al.  Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. , 2008, Ecology.

[57]  A. Siefert,et al.  Spatial patterns of functional divergence in old‐field plant communities , 2012 .

[58]  A. L. Koch,et al.  The logarithm in biology. 1. Mechanisms generating the log-normal distribution exactly. , 1966, Journal of theoretical biology.

[59]  S. Havlin,et al.  Climate networks around the globe are significantly affected by El Niño. , 2008, Physical review letters.

[60]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[61]  Fernanda S. Valdovinos,et al.  Topological change of Andean plant–pollinator networks along an altitudinal gradient , 2010 .

[62]  Raphaël Pélissier,et al.  On explicit formulas of edge effect correction for Ripley's K‐function , 1999 .

[63]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[64]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[65]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[66]  Dong Zhuang,et al.  On competitive relationship networks: A new method for industrial competition analysis , 2007 .

[67]  Michael T. Gastner,et al.  The spatial structure of networks , 2006 .

[68]  Jordi Bascompte,et al.  Interaction strength combinations and the overfishing of a marine food web. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[70]  Drew W. Purves,et al.  Experimental derivation of functions relating growth of Arabidopsis thaliana to neighbour size and distance , 2002 .

[71]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[72]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[73]  Jacqueline McGlade,et al.  A coupled map lattice model of the growth of plant monocultures , 1996 .

[74]  I M Sokolov,et al.  Evolving networks with disadvantaged long-range connections. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[76]  A. A. Rezende,et al.  Nested liana-tree network in three distinct neotropical vegetation formations , 2010 .

[77]  Robert M May,et al.  Network structure and the biology of populations. , 2006, Trends in ecology & evolution.