Synchronization in On-Off Stochastic Networks: Windows of Opportunity

We study dynamical networks whose topology and intrinsic parameters stochastically change, on a time scale that ranges from fast to slow. When switching is fast, the stochastic network synchronizes as long as synchronization in the averaged network, obtained by replacing the random variables by their mean, becomes stable. We apply a recently developed general theory of blinking systems to prove global stability of synchronization in the fast switching limit. We use a network of Lorenz systems to derive explicit probabilistic bounds on the switching frequency sufficient for the network to synchronize almost surely and globally. Going beyond fast switching, we consider networks of Rössler and Duffing oscillators and reveal unexpected windows of intermediate switching frequencies in which synchronization in the switching network becomes stable even though it is unstable in the averaged/fast-switching network.

[1]  S. Boccaletti,et al.  Synchronization of moving chaotic agents. , 2008, Physical review letters.

[2]  Martin Hasler,et al.  Uniqueness of the asymptotic behaviour of autonomous, and non-autonomous, switched and non-switched linear and non-linear systems of dimension 2 , 1988 .

[3]  Adilson E Motter,et al.  Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions , 2009, Proceedings of the National Academy of Sciences.

[4]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[5]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[6]  P. L. Kapitsa,et al.  Dynamical Stability of a Pendulum when its Point of Suspension Vibrates , 1965 .

[7]  Maurizio Porfiri,et al.  Random talk: Random walk and synchronizability in a moving neighborhood network☆ , 2006 .

[8]  Martin Hasler,et al.  Dynamics of Stochastically Blinking Systems. Part I: Finite Time Properties , 2013, SIAM J. Appl. Dyn. Syst..

[9]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[10]  Maurizio Porfiri,et al.  Evolution of Complex Networks via Edge Snapping , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Maurizio Porfiri,et al.  Synchronization in Random Weighted Directed Networks , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Mario di Bernardo,et al.  Adaptive Pinning Control of Networks of Circuits and Systems in Lur'e Form , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Thomas E. Gorochowski,et al.  Evolving dynamical networks: A formalism for describing complex systems , 2012, Complex..

[14]  Maurizio Porfiri,et al.  Evolving dynamical networks , 2014 .

[15]  Jonathan C. Mattingly,et al.  Sensitivity to switching rates in stochastically switched odes , 2013, 1310.2525.

[16]  Joseph D Skufca,et al.  Communication and synchronization in, disconnected networks with dynamic topology: moving neighborhood networks. , 2004, Mathematical biosciences and engineering : MBE.

[17]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[18]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[19]  P DeLellis,et al.  Synchronization and control of complex networks via contraction, adaptation and evolution , 2010, IEEE Circuits and Systems Magazine.

[20]  Igor Belykh,et al.  Dynamical networks with on-off stochastic connections: Beyond fast switching , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[21]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[22]  Henk Nijmeijer,et al.  Synchronization and Graph Topology , 2005, Int. J. Bifurc. Chaos.

[23]  E. Ott,et al.  Adaptive synchronization of dynamics on evolving complex networks. , 2008, Physical review letters.

[24]  Jürgen Kurths,et al.  Enhanced synchronizability in scale-free networks. , 2009, Chaos.

[25]  Maurizio Porfiri,et al.  Master-Slave Global Stochastic Synchronization of Chaotic Oscillators , 2008, SIAM J. Appl. Dyn. Syst..

[26]  Martin Hasler,et al.  Synchronization of bursting neurons: what matters in the network topology. , 2005, Physical review letters.

[27]  F. Garofalo,et al.  Synchronization of complex networks through local adaptive coupling. , 2008, Chaos.

[28]  Maurizio Porfiri,et al.  Stochastic synchronization in blinking networks of chaotic maps. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.

[30]  Guanrong Chen,et al.  Global synchronization and asymptotic stability of complex dynamical networks , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[32]  Przemyslaw Perlikowski,et al.  Ragged synchronizability of coupled oscillators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Chai Wah Wu,et al.  Synchronization and convergence of linear dynamics in random directed networks , 2006, IEEE Transactions on Automatic Control.

[34]  Maurizio Porfiri,et al.  Consensus Seeking Over Random Weighted Directed Graphs , 2007, IEEE Transactions on Automatic Control.

[35]  Belykh,et al.  Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Martin Hasler,et al.  Dynamics of Stochastically Blinking Systems. Part II: Asymptotic Properties , 2013, SIAM J. Appl. Dyn. Syst..

[37]  Ernest Barreto,et al.  Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. , 2008, Chaos.

[38]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[39]  Ljupco Kocarev,et al.  Cooperative Phenomena in Networks of Oscillators With Non-Identical Interactions and Dynamics , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  David J. Hill,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[41]  M. Hasler,et al.  Multistable randomly switching oscillators: The odds of meeting a ghost , 2013 .

[42]  Chi K. Tse,et al.  Complex behavior in switching power converters , 2002, Proc. IEEE.

[43]  Seth A. Myers,et al.  Spontaneous synchrony in power-grid networks , 2013, Nature Physics.

[44]  Kunihiko Kaneko,et al.  Spontaneous structure formation in a network of chaotic units with variable connection strengths. , 2002, Physical review letters.

[45]  Sudeshna Sinha,et al.  Rapidly switched random links enhance spatiotemporal regularity. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. Strogatz Exploring complex networks , 2001, Nature.

[47]  Maurizio Porfiri A master stability function for stochastically coupled chaotic maps , 2011 .

[48]  Martin Hasler,et al.  Generalized connection graph method for synchronization in asymmetrical networks , 2006 .

[49]  L. Pecora Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems , 1998 .

[50]  M. Hasler,et al.  Synchronization in asymmetrically coupled networks with node balance. , 2006, Chaos.

[51]  Martin Hasler,et al.  Blinking Long-Range Connections Increase the Functionality of Locally Connected Networks , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[52]  Alexander S. Mikhailov,et al.  Dynamical systems with time-dependent coupling: Clustering and critical behaviour , 2004 .

[53]  Aleksandar M. Stankovic,et al.  Randomized modulation in power electronic converters , 2002, Proc. IEEE.

[54]  Maurizio Porfiri,et al.  Consensus Over Numerosity-Constrained Random Networks , 2011, IEEE Transactions on Automatic Control.

[55]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[56]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[57]  M. Porfiri,et al.  Global pulse synchronization of chaotic oscillators through fast-switching: theory and experiments , 2009 .

[58]  M. Hasler,et al.  Persistent clusters in lattices of coupled nonidentical chaotic systems. , 2003, Chaos.

[59]  Ljupco Kocarev,et al.  Sporadic driving of dynamical systems , 1997 .

[60]  Wenwu Yu,et al.  Distributed Adaptive Control of Synchronization in Complex Networks , 2012, IEEE Transactions on Automatic Control.

[61]  M. di Bernardo,et al.  Evolving enhanced topologies for the synchronization of dynamical complex networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.