Limit-point and limit-circle criteria for singular second-order linear difference equations with complex coefficients

This paper is concerned with limit-point and limit-circle criteria of singular second-order linear difference equations with complex coefficients. Formally self-adjoint second-order linear difference operators are formulated. Several sufficient conditions and sufficient and necessary conditions for the limit-point and limit-circle cases are established. These results extend some relevant existing results.

[1]  M. Katětov Linear operators. II , 1951 .

[2]  F. V. Atkinson,et al.  Discrete and Continuous Boundary Problems , 1964 .

[3]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[4]  C. Ahlbrandt,et al.  Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations , 1996 .

[5]  Yuming Shi,et al.  Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems , 2006 .

[6]  Yuming Shi Spectral theory of discrete linear Hamiltonian systems , 2004 .

[7]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[8]  S. Clark,et al.  A Spectral Analysis for Self-Adjoint Operators Generated by a Class of Second Order Difference Equations , 1996 .

[9]  J. Weidmann,et al.  Some remarks on a separation and limit-point criterion of second-order, ordinary differential expressions , 1973 .

[10]  B. J. Harris,et al.  LIMIT-CIRCLE CRITERIA FOR SECOND-ORDER DIFFERENTIAL EXPRESSIONS , 1984 .

[11]  E. Hille,et al.  Lectures on ordinary differential equations , 1968 .

[12]  Yuming Shi,et al.  The limit circle and limit point criteria for second-order linear difference equations , 2004 .

[13]  Steve Clark,et al.  On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems , 2003, math/0312177.

[14]  D. Hinton,et al.  Spectral analysis of second order difference equations , 1978 .

[15]  Anton Zettl,et al.  The Deficiency Index Problem for Powers of Ordinary Differential Expressions , 1977 .