Exploratory Data Analysis Techniques to Determine the Dimensionality of Complex Nonlinear Phenomena: The L-to-H Transition at JET as a Case Study
暂无分享,去创建一个
A. Murari | G. Vagliasindi | M. Gelfusa | D. Mazon | N. Martin | A. Murari | G. Vagliasindi | M. Gelfusa | D. Mazon | N. Martin
[1] A. L. Rogister. Ionization instability driven magnetic island belt, particle confinement and edge profiles , 1994 .
[2] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[3] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[4] H. R. Wilson,et al. REVIEW ARTICLE: A review of theories of the L-H transition , 2000 .
[5] G. Janeschitz,et al. The Scaling of the Edge Temperature in Tokamaks Based on the Alfven Drift - Wave Turbulence , 1998 .
[6] M. Kramer. Nonlinear principal component analysis using autoassociative neural networks , 1991 .
[7] P. Green,et al. Analyzing multivariate data , 1978 .
[8] Y. R. Martin,et al. H-mode access on JET and implications for ITER , 2008 .
[9] Danilo Rastovic,et al. Targeting and synchronization at tokamak with recurrent artificial neural networks , 2012, Neural Computing and Applications.
[10] David R. Anderson,et al. Model Selection and Multimodel Inference , 2003 .
[11] P. Arena,et al. Fuzzy logic and support vector machine approaches to regime identification in JET , 2006, IEEE Transactions on Plasma Science.
[12] A. Chankin,et al. Critical parameters for turbulent transport in the SOL: mechanism for the L - H transition and its impact on the H-mode power threshold and density limits , 1997 .
[13] G. Saibene,et al. Interpretation of density limits and the H-mode operational diagram through similarity parameters for edge transport mechanisms , 1999 .
[14] Danilo Rastović. Applications of artificial intelligence and multi-variable control of chaos on tokamak equilibriums , 2010 .
[15] F. Wagner,et al. Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .