Light-driven monodirectional molecular rotor

[1]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[2]  George Musser,et al.  Taming Maxwell's Demon , 1999 .

[3]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[4]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[5]  N. Harada,et al.  Photochemistry and Absolute Stereochemistry of Unique Chiral Olefins, trans- and cis-1,1′,2,2′,3,3′,4,4′-Octahydro-3,3′-dimethyl-4,4′-biphenanthrylidenes , 1998 .

[6]  Roberto Dominguez,et al.  Crystal Structure of a Vertebrate Smooth Muscle Myosin Motor Domain and Its Complex with the Essential Light Chain Visualization of the Pre–Power Stroke State , 1998, Cell.

[7]  Jonathan Clayden,et al.  Concerted Rotation in a Tertiary Aromatic Amide: Towards a Simple Molecular Gear , 1998 .

[8]  Joachim,et al.  Rotation of a single molecule within a supramolecular bearing , 1998, Science.

[9]  Toshio Yanagida,et al.  Dynein arms are oscillating force generators , 1998, Nature.

[10]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[11]  T. Ross Kelly,et al.  New Molecular Devices: In Search of a Molecular Ratchet , 1998 .

[12]  A. P. Davis,et al.  Tilting at Windmills? The Second Law Survives. , 1998, Angewandte Chemie.

[13]  Andrew Huxley,et al.  How molecular motors work in muscle , 1998, Nature.

[14]  J. Howard,et al.  Molecular motors: structural adaptations to cellular functions , 1997, Nature.

[15]  T. Ross Kelly,et al.  In Search of Molecular Ratchets , 1997 .

[16]  N. Harada,et al.  Chemistry of Unique Chiral Olefins. 3. Synthesis and Absolute Stereochemistry of trans- and cis-1,1‘,2,2‘,3,3‘,4,4‘- Octahydro-3,3‘-dimethyl-4,4‘-biphenanthrylidenes , 1997 .

[17]  Ben L. Feringa,et al.  Toward a switchable molecular rotor. Unexpected dynamic behavior of functionalized overcrowded alkenes , 1997 .

[18]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[19]  S. Block Real engines of creation , 1997, Nature.

[20]  Ben L. Feringa,et al.  Dynamic Control and Amplification of Molecular Chirality by Circular Polarized Light , 1996, Science.

[21]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile”. , 1996 .

[22]  J. Travis Making Light Work of Brownian Motion , 1995, Science.

[23]  Kaplan,et al.  Optical thermal ratchet. , 1995, Physical review letters.

[24]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[25]  A. Ajdari,et al.  Directional motion of brownian particles induced by a periodic asymmetric potential , 1994, Nature.

[26]  David Bebbington,et al.  A Molecular Brake , 1994 .

[27]  Anthony Harriman,et al.  A Light‐Induced Molecular Shuttle Based on a [2]Rotaxane‐Derived Triad , 1993 .

[28]  R A Milligan,et al.  Structure of the actin-myosin complex and its implications for muscle contraction. , 1993, Science.

[29]  N. Harada,et al.  Chemistry of unique chiral olefins : A light-powered chiral molecular motor with monodirectional rotation , 2000 .

[30]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[31]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[32]  K. E. Drexler Nanosystems: Molecular Machinery, Manufacturing, and Computation , 1992 .

[33]  F. Oosawa,et al.  Protein motors and Maxwell's demons: does mechanochemical transduction involve a thermal ratchet? , 1990, Advances in biophysics.