Overlapping Schwarz Methods for Isogeometric Analysis

We construct and analyze an overlapping Schwarz preconditioner for elliptic problems discretized with isogeometric analysis. The preconditioner is based on partitioning the domain of the problem into overlapping subdomains, solving local isogeometric problems on these subdomains, and solving an additional coarse isogeometric problem associated with the subdomain mesh. We develop an $h$-analysis of the preconditioner, showing in particular that the resulting algorithm is scalable and its convergence rate depends linearly on the ratio between subdomain and „overlap sizes” for fixed polynomial degree $p$ and regularity $k$ of the basis functions. Numerical results in two- and three-dimensional tests show the good convergence properties of the preconditioner with respect to the isogeometric discretization parameters $h, p, k$, number of subdomains $N$, overlap size, and also jumps in the coefficients of the elliptic operator.

[1]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[2]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[3]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[4]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[5]  Paul Fischer,et al.  Hybrid Schwarz-Multigrid Methods for the Spectral Element Method: Extensions to Navier-Stokes , 2005 .

[6]  Luca F. Pavarino,et al.  Overlapping Schwarz and Spectral Element Methods for Linear Elasticity and Elastic Waves , 2006, J. Sci. Comput..

[7]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[8]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[9]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[10]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[11]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[12]  Gerald Farin,et al.  NURBS: From Projective Geometry to Practical Use , 1999 .

[13]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[14]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[15]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[16]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[17]  Thomas J. R. Hughes,et al.  Nonlinear Isogeometric Analysis , 2009 .

[18]  G. Fairweather,et al.  An Additive Schwarz Algorithm for Piecewise Hermite Bicubic Orthogonal Spline Collocation , 1994 .

[19]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[20]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[21]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[22]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[23]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[24]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[25]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[26]  Francesca Rapetti,et al.  Overlapping Schwarz Methods for Fekete and Gauss-Lobatto Spectral Elements , 2007, SIAM J. Sci. Comput..

[27]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[28]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[29]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[30]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[31]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[32]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[33]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[34]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[35]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[36]  Bernard Bialecki,et al.  Multilevel additive and multiplicative methods for orthogonal spline collocation problems , 1997 .

[37]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[38]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[39]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .