Maximum stable set formulations and heuristics based on continuous optimization

Abstract. The stability number α(G) for a given graph G is the size of a maximum stable set in G. The Lovász theta number provides an upper bound on α(G) and can be computed in polynomial time as the optimal value of the Lovász semidefinite program. In this paper, we show that restricting the matrix variable in the Lovász semidefinite program to be rank-one and rank-two, respectively, yields a pair of continuous, nonlinear optimization problems each having the global optimal value α(G). We propose heuristics for obtaining large stable sets in G based on these new formulations and present computational results indicating the effectiveness of the heuristics.

[1]  R. Monteiro,et al.  A projected gradient algorithm for solving the maxcut SDP relaxation , 2001 .

[2]  R. C. Monteiro,et al.  Interior-Point Algorithms for Semidefinite Programming Based on A Nonlinear Programming Formulation , 1999 .

[3]  Panos M. Pardalos,et al.  Continuous Approaches to Discrete Optimization Problems , 1996 .

[4]  Marcello Pelillo,et al.  Evolutionary Approach to the Maximum Clique Problem: Empirical Evidence on a Larger Scale , 1997 .

[5]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[6]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[7]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[8]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[9]  Satissed Now Consider Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .

[10]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[11]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[12]  Gerald Gruber On Semidefinite Programming and Applications in Combinatorial Optimization , 2000 .

[13]  A. Jagota,et al.  Feasible and infeasible maxima in a quadratic program for maximum clique , 1996 .

[14]  Renato D. C. Monteiro,et al.  Solving Semidefinite Programs via Nonlinear Programming, Part II: Interior Point Methods for a Subclass of SDPs , 1999 .

[15]  Franz Rendl,et al.  Computational Experience with Stable Set Relaxations , 2002, SIAM J. Optim..

[16]  Yin Zhang,et al.  Digital Object Identifier (DOI) 10.1007/s101070100279 , 2000 .

[17]  Y. Ye,et al.  Approximating Maximum Stable Set and Minimum Graph Coloring Problems with the Positive Semidefinite Relaxation , 2001 .

[18]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[19]  Panos M. Pardalos,et al.  A continuous based heuristic for the maximum clique problem , 1993, Cliques, Coloring, and Satisfiability.

[20]  Yin Zhang,et al.  Rank-Two Relaxation Heuristics for MAX-CUT and Other Binary Quadratic Programs , 2002, SIAM J. Optim..

[21]  Marcello Pelillo,et al.  A Complementary Pivoting Approach to the Maximum Weight Clique Problem , 2002, SIAM J. Optim..

[22]  Laura A. Sanchis,et al.  Approximately solving Maximum Clique using neural network and related heuristics , 1993, Cliques, Coloring, and Satisfiability.

[23]  M. Trick,et al.  Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993 , 1996 .

[24]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[25]  R. Monteiro,et al.  Solving SemideÞnite Programs via Nonlinear Programming Part I: Transformations and Derivatives É , 1999 .

[26]  Panos M. Pardalos,et al.  Continuous Characterizations of the Maximum Clique Problem , 1997, Math. Oper. Res..