Recent advances of conductive nanocomposites in printed and flexible electronics

Conductive nanocomposites have emerged as significant smart engineered materials for realizing flexible electronics on diverse substrates in recent years. Conductive nanocomposites are comprised of conductive fillers mixed with polymeric elastomer (e.g. PDMS (polydimethylsiloxane)). The possibility to tune electrical as well as mechanical properties of nanocomposites makes them suitable for a wide spectrum of applications including sensors and electronics on nonplanar and stretchable surfaces. A number of conductive nanofillers and manufacturing technologies have been developed to meet the diverse requirements of various applications. Considering the substantial contribution of conductive nanocomposites, it is opportune time to review the potentials of various nanofillers, their synthesis, processing methodologies and challenges associated to them. This paper reviews conductive nanocomposites, especially in context with their use in the development of electronic components and the sensors exploiting the piezoresistive behavior. The paper is structured around the nanocomposites related studies aiming to develop various building blocks of flexible electronic skin systems such as pressure, touch, strain and temperature sensors as well as stretchable interconnects. Besides this, the use of nanocomposites in other stimulating industrial and biomedical applications has also been explored briefly.

[1]  Giancarlo Canavese,et al.  A Tactile Sensor Device Exploiting the Tunable Sensitivity of Copper-PDMS Piezoresistive Composite , 2012 .

[2]  David Bloor,et al.  Metal–polymer composite with nanostructured filler particles and amplified physical properties , 2006 .

[3]  A. Bermak,et al.  Fabrication technology of piezoresistive conductive PDMS for micro fingerprint sensors , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[5]  Malcolm L. H. Green,et al.  The opening and filling of single walled carbon nanotubes (SWTs) , 1998 .

[6]  Yong Wei,et al.  Hybrids of silver nanowires and silica nanoparticles as morphology controlled conductive filler applied in flexible conductive nanocomposites , 2015 .

[7]  N. Nakashima Solubilization of single-walled carbon nanotubes with condensed aromatic compounds , 2006 .

[8]  Yongan Huang,et al.  Roll-to-Roll Processing of Flexible Heterogeneous Electronics With Low Interfacial Residual Stress , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[9]  Haiqing Peng,et al.  Sidewall Amino-Functionalization of Single-Walled Carbon Nanotubes through Fluorination and Subsequent Reactions with Terminal Diamines , 2003 .

[10]  David W. Greve,et al.  Comparison of piezoresistive and capacitive ultrasonic transducers , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  Eugene M. Terentjev,et al.  Tailoring the Electrical Properties of Carbon Nanotube–Polymer Composites , 2010 .

[12]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[13]  Pekka Ruuskanen,et al.  Electrically Conductive Metal Polymer Nanocomposites for Electronics Applications , 2008 .

[14]  Devendra Kumar,et al.  Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications , 2009 .

[15]  Jang‐Kyo Kim,et al.  Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets , 2007 .

[16]  Yu-Cheng Lin,et al.  Flexible Electronics Sensors for Tactile Multi-Touching , 2009, Sensors.

[17]  Kenneth J. Loh,et al.  Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology , 2012 .

[18]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[19]  Musa R. Kamal,et al.  Estimation of the volume resistivity of electrically conductive composites , 1997 .

[20]  Giancarlo Canavese,et al.  Spiky nanostructured metal particles as filler of polymeric composites showing tunable electrical conductivity , 2012 .

[21]  Brian L. Wardle,et al.  Nanocomposite Flexible Pressure Sensor for Biomedical Applications , 2011 .

[22]  Stefano Bianco,et al.  Nanocomposites based on elastomeric matrix filled with carbon nanotubes for biological applications , 2011 .

[23]  K. Schulte,et al.  Time and temperature dependent piezoresistance of carbon nanofiller/polymer composites under dynamic load , 2012, Journal of Materials Science.

[24]  Oren Regev,et al.  Toolbox for Dispersing Carbon Nanotubes into Polymers To Get Conductive Nanocomposites , 2006 .

[25]  C. Levy,et al.  Multiwalled carbon nanotube film for strain sensing , 2008, Nanotechnology.

[26]  Vivek Subramanian,et al.  Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices , 2005, Proceedings of the IEEE.

[27]  H. Wagner,et al.  The role of surfactants in dispersion of carbon nanotubes. , 2006, Advances in colloid and interface science.

[28]  F. Dong,et al.  Graphitic carbon nitride based nanocomposites: a review. , 2015, Nanoscale.

[29]  Harri Kopola,et al.  Novel roll-to-roll lift-off patterned active-matrix display on flexible polymer substrate , 2009 .

[30]  Aaron P. Gerratt,et al.  Elastomeric Electronic Skin for Prosthetic Tactile Sensation , 2015 .

[31]  F. Krebs,et al.  Roll‐to‐Roll fabrication of large area functional organic materials , 2013 .

[32]  M. Kalantari Development of Piezoresistive Tactile Sensors and a GraphicalDisplay System for Minimally Invasive Surgery and Robotics , 2013 .

[33]  C. H. Seager,et al.  Percolation and conductivity: A computer study. II , 1974 .

[34]  A John Hart,et al.  Fabrication and Characterization of Ultrahigh‐Volume‐ Fraction Aligned Carbon Nanotube–Polymer Composites , 2008, Advanced materials.

[35]  P. Drude Zur Elektronentheorie der Metalle , 1900 .

[36]  Weidong Zhou,et al.  Fast Flexible Electronics Based on Printable Thin Mono-Crystalline Silicon , 2011 .

[37]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[38]  Shoko Yoshikawa,et al.  Resistivities of conductive composites , 1992 .

[39]  Danilo Demarchi,et al.  Wearable and flexible pedobarographic insole for continuous pressure monitoring , 2013, 2013 IEEE SENSORS.

[40]  Branko Glisic,et al.  Development of distributed strain and temperature sensing cables , 2005, International Conference on Optical Fibre Sensors.

[41]  John A. Rogers,et al.  Highly Sensitive Skin‐Mountable Strain Gauges Based Entirely on Elastomers , 2012 .

[42]  L. Lorenzelli,et al.  Bendable piezoresistive sensors by screen printing MWCNT/PDMS composites on flexible substrates , 2014, 2014 10th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[43]  S. Yellampalli Carbon Nanotubes - Synthesis, Characterization, Applications , 2011 .

[44]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[45]  I. Park,et al.  Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. , 2014, ACS nano.

[46]  P. Drude,et al.  Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte , 1900 .

[47]  C. Liu,et al.  Recent Developments in Polymer MEMS , 2007 .

[48]  A. Javey,et al.  Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films , 2014, Proceedings of the National Academy of Sciences.

[49]  L. Meng,et al.  Advanced technology for functionalization of carbon nanotubes , 2009 .

[50]  Nor Muzakkir Nor Ayob,et al.  Current trend of tactile sensor in advanced applications , 2012 .

[51]  P. Sheng,et al.  Characterizing and Patterning of PDMS‐Based Conducting Composites , 2007 .

[52]  Kanti Jain,et al.  Flexible Electronics and Displays: High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production , 2005, Proceedings of the IEEE.

[53]  Ning Hu,et al.  Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites , 2011, Sensors.

[54]  S. Pandey,et al.  Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies , 2013, Scientific Reports.

[55]  S. Wagner,et al.  An elastically stretchable TFT circuit , 2004, IEEE Electron Device Letters.

[56]  Leandro Lorenzelli,et al.  Flexible Tactile Sensors Using Screen-Printed P(VDF-TrFE) and MWCNT/PDMS Composites , 2015, IEEE Sensors Journal.

[57]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[58]  Kunmo Chu,et al.  Electrical and Thermal Properties of Carbon-Nanotube Composite for Flexible Electric Heating-Unit Applications , 2013, IEEE Electron Device Letters.

[59]  J C K Lai,et al.  Prosthetic devices: Challenges and implications of robotic implants and biological interfaces , 2007, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[60]  J. Rogers,et al.  Recent progress in soft lithography , 2005 .

[61]  John Lewis Material challenge for flexible organic devices , 2006 .

[62]  V. C. Moore,et al.  The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[63]  Ravinder Dahiya,et al.  Printing of high concentration nanocomposites (MWNTs/PDMS) using 3D-printed shadow masks , 2015, 2015 XVIII AISEM Annual Conference.

[64]  Zhenqiang Ma,et al.  An Electronic Second Skin , 2011, Science.

[65]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[66]  G. Briggs,et al.  Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes , 2004 .

[67]  Ahmad Atieh,et al.  Design, Modeling, Fabrication and Testing of a Piezoresistive-Based Tactile Sensor for Minimally Invasive Surgery Applications , 2012 .

[68]  R. Verdejo,et al.  Graphene filled polymer nanocomposites , 2011 .

[69]  Sung-Jin Choi,et al.  A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. , 2011, ACS applied materials & interfaces.

[70]  Jin-Woo Choi,et al.  Strain-Dependent Resistance of PDMS and Carbon Nanotubes Composite Microstructures , 2010, IEEE Transactions on Nanotechnology.

[71]  Giancarlo Canavese,et al.  Flexible Tactile Sensing Based on Piezoresistive Composites: A Review , 2014, Sensors.

[72]  Tran Thanh Tung,et al.  Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers , 2016 .

[73]  T. Fujigaya,et al.  Methodology for homogeneous dispersion of single-walled carbon nanotubes by physical modification , 2008 .

[74]  Bart Vandevelde,et al.  Design of Metal Interconnects for Stretchable Electronic Circuits using Finite Element Analysis , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[75]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[76]  Marc Monthioux,et al.  Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials , 1999 .

[77]  Robert J. Wood,et al.  Wearable tactile keypad with stretchable artificial skin , 2011, 2011 IEEE International Conference on Robotics and Automation.

[78]  N. Hu,et al.  Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance , 2013, Nanotechnology.

[79]  Jan G. Korvink,et al.  Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials , 2010 .

[80]  J. C. Encinas,et al.  Piezo-resistance effect in composite based on cross-linked polydimethylsiloxane and polyaniline: potential pressure sensor application , 2012, Journal of Materials Science.

[81]  K. Fan,et al.  A 32 × 32 temperature and tactile sensing array using PI-copper films , 2010 .

[82]  A novel tactile sensing array with image retaining and erasing capabilities using CNT-PDMS polymer mixed by dielectrophoresis , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[83]  Liangbing Hu,et al.  A method of printing carbon nanotube thin films , 2006 .

[84]  M. Hersam Progress towards monodisperse single-walled carbon nanotubes. , 2008, Nature nanotechnology.

[85]  Minoru Noda,et al.  Miniature Ultrasonic and Tactile Sensors for Dexterous Robot , 2012 .

[86]  P. Veltink,et al.  The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications , 1997 .

[87]  W. J. Zhang,et al.  Modelling of piezoresistive response of carbon nanotube network based films under in-plane straining by percolation theory , 2012 .

[88]  Wen-Yang Chang,et al.  A Large Area Flexible Array Sensors Using Screen Printing Technology , 2009, Journal of Display Technology.

[89]  Ravinder Dahiya,et al.  Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers , 2015 .

[90]  Xinjuan Chen,et al.  Dependence of the Impact Response of Polyvinylidene Fluoride Sensors on Their Supporting Materials' Elasticity , 2013, Sensors.

[91]  Benjamin C. K. Tee,et al.  25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress , 2013, Advanced materials.

[92]  Paolo Lugli,et al.  Flexible Carbon Nanotube Based Gas Sensors Fabricated by Large-Scale Spray Deposition , 2013, IEEE Sensors Journal.

[93]  Ravinder Dahiya,et al.  Developing Electronic Skin with the Sense of Touch , 2015 .

[94]  S. Bellucci,et al.  Simulation of electromagnetic properties in carbon nanotubes and graphene-based nanostructures , 2012 .

[95]  Gordon Cheng,et al.  Directions Toward Effective Utilization of Tactile Skin: A Review , 2013, IEEE Sensors Journal.

[96]  Alex Simpkins,et al.  Robotic Tactile Sensing: Technologies and System (Dahiya, R.S. and Valle, M.; 2013) [On the Shelf] , 2013, IEEE Robotics & Automation Magazine.

[97]  Yongtaek Hong,et al.  Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. , 2015, Nanoscale.

[98]  R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988 .

[99]  Leandro Lorenzelli,et al.  Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review , 2015, IEEE Sensors Journal.

[100]  Robert D. Howe,et al.  Tactile Display of Vibratory Information in Teleoperation and Virtual Environments , 1995, Presence: Teleoperators & Virtual Environments.

[101]  Ravinder Dahiya,et al.  Flexible Pressure Sensors Based on Screen-Printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs , 2015, IEEE Transactions on Semiconductor Manufacturing.

[102]  Cheng Li,et al.  A Pressure Sensing System for Heart Rate Monitoring with Polymer-Based Pressure Sensors and an Anti-Interference Post Processing Circuit , 2015, Sensors.

[103]  Jaeyoung Jang,et al.  Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors , 2011 .

[104]  W. Wang,et al.  Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites , 2012 .

[105]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[106]  Shuzhi Sam Ge,et al.  Prosthetic finger phalanges with lifelike skin compliance for low-force social touching interactions , 2011, Journal of NeuroEngineering and Rehabilitation.

[107]  S. Bauer,et al.  Materials for stretchable electronics , 2012 .

[108]  K. Balasubramanian,et al.  Chemically functionalized carbon nanotubes. , 2005, Small.

[109]  A. Esawi,et al.  Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites , 2010 .

[110]  Mark G. Allen,et al.  Deformable Strain Sensors Based on Patterned MWCNTs/ Polydimethylsiloxane Composites , 2013 .

[111]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[112]  Vijay K. Varadan,et al.  Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst , 2002 .

[113]  M. Bown,et al.  Electrically conductive polymers and composites for biomedical applications , 2015 .

[114]  K. Liao,et al.  Highly Electrically Conductive Nanocomposites Based on PolymerInfused Graphene Sponges , 2014, Scientific Reports.

[115]  E. Meng,et al.  High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors , 2013 .

[116]  Mark G. Allen,et al.  Fabrication of patterned carbon nanotube (CNT) / elastomer bilayer material and its utilization as force sensors , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[117]  T. Chuah,et al.  Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber , 2006 .

[118]  Chao Zhang,et al.  One‐Step Ionic‐Liquid‐Assisted Electrochemical Synthesis of Ionic‐Liquid‐Functionalized Graphene Sheets Directly from Graphite , 2008 .

[119]  M. Miki-Yoshida,et al.  Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes , 2008 .

[120]  Siegfried Bauer,et al.  Flexible electronics: Sophisticated skin. , 2013, Nature materials.

[121]  H. Wagner,et al.  Mechanical properties of carbon nanoparticle-reinforced elastomers , 2003 .

[122]  J. Nagy,et al.  Ball milling effect on the structure of single-wall carbon nanotubes , 2004 .

[123]  Robert H. Reuss,et al.  Macroelectronics: Perspectives on Technology and Applications , 2005, Proceedings of the IEEE.

[124]  S. Jana,et al.  Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids , 2001 .

[125]  Chang Liu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Development of Polyimide Flexible Tactile Sensor Skin , 2022 .

[126]  Jin-Woo Choi,et al.  Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations , 2012, Nanomaterials.

[127]  Nigel H. Lovell,et al.  A review of tactile sensing technologies with applications in biomedical engineering , 2012 .

[128]  John T W Yeow,et al.  Conductive polymer-based sensors for biomedical applications. , 2011, Biosensors & bioelectronics.

[129]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[130]  Yang Chuan,et al.  The intelligent pressure sensor system based on DSP , 2010, 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE).

[131]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[132]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[133]  P. Praserthdam,et al.  Alignment of carbon nanotubes in polyimide under electric and magnetic fields , 2012 .

[134]  Weileun Fang,et al.  Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites , 2009 .

[135]  T. Maeder,et al.  Formulation of Composite Resistive Pastes for Micro-Heater Manufacturing , 2009 .

[136]  Hani E. Naguib,et al.  Piezoresistance characterization of poly(dimethyl-siloxane) and poly(ethylene) carbon nanotube composites , 2011 .

[137]  Pauwel Goethals Development of a Tactile Feedback System for Robot Assisted Minimally Invasive Surgery (Ontwikkeling van een tactiel terugkoppelingssysteem voor robotgeassisteerde minimaal invasieve chirurgie) , 2011 .

[138]  J. Engel,et al.  Multi-Walled Carbon Nanotube Filled Conductive Elastomers: Materials and Application to Micro Transducers , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[139]  Hang Zhao,et al.  Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction. , 2015, ACS applied materials & interfaces.

[140]  Kuang-Chao Fan,et al.  Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite , 2010, Sensors.

[141]  K. Winey,et al.  Electrical properties of polymer nanocomposites containing rod-like nanofillers , 2015 .

[142]  G. Sotiriou,et al.  Rapid synthesis of flexible conductive polymer nanocomposite films , 2015, Nanotechnology.

[143]  Walied A. Moussa,et al.  High-Performance Piezoresistive MEMS Strain Sensor with Low Thermal Sensitivity , 2011, Sensors.

[144]  K. Khanafer,et al.  Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications , 2009, Biomedical microdevices.

[145]  Lucia Beccai,et al.  A miniaturized and flexible optoelectronic sensing system for tactile skin , 2007 .

[146]  Zhuo Sun,et al.  Field emission properties of carbon nanotubes in a stretchable polydimethylsiloxane matrix , 2012 .

[147]  Hyoung Jin Choi,et al.  Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes , 2007 .

[148]  Giancarlo Canavese,et al.  Comprehensive Characterization of Large Piezoresistive Variation of Ni-PDMS Composites , 2011 .

[149]  K. Gottschalk,et al.  Fabrication of micro pillars using multiwall carbon nanotubes/polymer nanocomposites , 2013 .

[150]  M. Monthioux,et al.  Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation , 2001 .

[151]  S. Wagner,et al.  Topographies of plasma-hardened surfaces of poly(dimethylsiloxane) , 2010 .

[152]  Y. Seo,et al.  A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena , 2013 .

[153]  M. Mendoza,et al.  Hydrodynamic Model for Conductivity in Graphene , 2013, Scientific Reports.

[154]  Mark Lee,et al.  Review Article Tactile sensing for mechatronics—a state of the art survey , 1999 .

[155]  Chao-Xuan Liu Microfabrication of conductive polymer nanocomposite for sensor applications , 2012 .

[156]  M. Prato,et al.  Organic functionalization of carbon nanotubes. , 2002, Journal of the American Chemical Society.

[157]  R. Krishnamoorti,et al.  Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. , 2004, Journal of the American Chemical Society.

[158]  S. Kulkarni,et al.  Giant piezoresistive response in zinc–polydimethylsiloxane composites under uniaxial pressure , 2008 .

[159]  Yaping Zang,et al.  Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection , 2015, Nature Communications.

[160]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[161]  A. Bermak,et al.  Study of piezoresistance effect of carbon nanotube-PDMS composite materials for nanosensors , 2007, 2007 7th IEEE Conference on Nanotechnology (IEEE NANO).

[162]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[163]  S. Bellucci,et al.  Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates , 2011 .

[164]  J. Zha,et al.  Positive piezoresistive behavior of electrically conductive alkyl-functionalized graphene/polydimethylsilicone nanocomposites , 2013 .

[165]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[166]  A. Kargov,et al.  Design and Evaluation of a Low-Cost Force Feedback System for Myoelectric Prosthetic Hands , 2006 .

[167]  Fang Zhang,et al.  Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors , 2012, Nano Research.

[168]  N. A. Siddiqui,et al.  DISPERSION AND FUNCTIONALIZATION OF CARBON NANOTUBES FOR POLYMER-BASED NANOCOMPOSITES: A REVIEW , 2010 .

[169]  Balberg,et al.  Tunneling and nonuniversal conductivity in composite materials. , 1987, Physical review letters.

[170]  J. Tour,et al.  Ozonation of Single-Walled Carbon Nanotubes and Their Assemblies on Rigid Self-Assembled Monolayers , 2002 .

[171]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[172]  M. K. Njuguna Characterisation of multi wall carbon nanotube–polymer composites for strain sensing applications , 2012 .

[173]  G. Whitesides,et al.  Paper-based piezoresistive MEMS force sensors , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[174]  Hui-Ming Cheng,et al.  Mechanical and electrical properties of a MWNT/epoxy composite , 2002 .

[175]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[176]  E. Biddiss,et al.  Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. , 2006, Medical engineering & physics.

[177]  K. T. Kim,et al.  Field‐Emission Behavior of a Carbon‐Nanotube‐Implanted Co Nanocomposite Fabricated from Pearl‐Necklace‐Structured Carbon Nanotube/Co Powders , 2006 .

[178]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.