High current CO2 reduction realized by edge/defect-rich bismuth nanosheets

[1]  Changsheng Cao,et al.  Ultrathin two-dimensional metallenes for heterogeneous catalysis , 2022, Chem Catalysis.

[2]  Haotian Wang,et al.  Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products , 2021, Joule.

[3]  Hua-ming Li,et al.  Edge-Site-Rich Ordered Macroporous BiOCl Triggers CO Activation for Efficient CO2 Photoreduction. , 2021, Small.

[4]  Xiaobing Hu,et al.  Scalable Chemical Interface Confinement Reduction BiOBr to Bismuth Porous Nanosheets for Electroreduction of Carbon Dioxide to Liquid Fuel , 2021, Advanced Functional Materials.

[5]  M. Zhang,et al.  Integrated 3D Open Network of Interconnected Bismuthene Arrays for Energy-Efficient and Electrosynthesis-Assisted Electrocatalytic CO2 Reduction. , 2021, Small.

[6]  Gengfeng Zheng,et al.  Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere‐Level Electrosynthesis of Formate from CO2 , 2021, Angewandte Chemie.

[7]  K. Reuter,et al.  Implicit Solvation Methods for Catalysis at Electrified Interfaces , 2021, Chemical reviews.

[8]  Yanguang Li,et al.  Large‐Area Vertically Aligned Bismuthene Nanosheet Arrays from Galvanic Replacement Reaction for Efficient Electrochemical CO2 Conversion , 2021, Advances in Materials.

[9]  Y. Jiao,et al.  The Controllable Reconstruction of Bi-MOFs for Electrochemical CO2 Reduction through Electrolyte and Potential Mediation. , 2021, Angewandte Chemie.

[10]  Yi Xie,et al.  Rapid and Scalable Synthesis of Prussian Blue Analogue Nanocubes for Electrocatalytic Water Oxidation † , 2021, Chinese Journal of Chemistry.

[11]  Jimmy C. Yu,et al.  Electronic Optimization by Coupling FeCo Nanoclusters and Pt Nanoparticles to Carbon Nanotubes for Efficient Hydrogen Evolution , 2021 .

[12]  Yi Xie,et al.  Ultrastable and Efficient Visible-light-driven CO2 Reduction Triggered by Regenerative Oxygen-vacancies in Bi2O2CO3 Nanosheets. , 2021, Angewandte Chemie.

[13]  Jing Lu,et al.  Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism , 2021 .

[14]  Jincai Zhao,et al.  Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators , 2021, Nature Communications.

[15]  Shengqing Xu The paradox of the energy revolution in China: A socio-technical transition perspective , 2020 .

[16]  E. Sargent,et al.  CO2 Electroreduction to Methane at Production Rates Exceeding 100 mA/cm2 , 2020 .

[17]  Z. Wen,et al.  Molten‐Salt‐Assisted Synthesis of Bismuth Nanosheets for Long‐term Continuous Electrocatalytic Conversion of CO 2 to Formate , 2020, Angewandte Chemie.

[18]  Wei Zhang,et al.  In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction , 2020, Advanced materials.

[19]  Haotian Wang,et al.  Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor , 2020, Nature Communications.

[20]  Changsheng Cao,et al.  Metal–Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel , 2020, Angewandte Chemie.

[21]  F. Calle‐Vallejo,et al.  A Semiempirical Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis , 2020, ACS Catalysis.

[22]  Christine M. Gabardo,et al.  Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation , 2020, Nature Energy.

[23]  A. Züttel,et al.  Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane , 2020 .

[24]  Qinghong Zhang,et al.  Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper , 2020, Nature Catalysis.

[25]  E. Iglesia,et al.  Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces , 2020 .

[26]  M. Mavrikakis,et al.  Bismuthene for highly efficient carbon dioxide electroreduction reaction , 2020, Nature Communications.

[27]  Christine M. Gabardo,et al.  Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly , 2019, Joule.

[28]  X. Lou,et al.  Bi 2 O 3 Nanosheets Grown on Multi‐Channel Carbon Matrix to Catalyze Efficient CO 2 Electroreduction to HCOOH , 2019, Angewandte Chemie.

[29]  Dan Wu,et al.  Mesoporous bismuth nanosheets electrochemically transformed from facet-controlled bismuth oxyiodide for selective electrocatalytic reduction of CO2 to formic acid. , 2019, ChemSusChem.

[30]  Ye Zhang,et al.  The p‐Orbital Delocalization of Main‐Group Metals to Boost CO 2 Electroreduction , 2018, Angewandte Chemie.

[31]  Wenjun Zhang,et al.  Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure , 2018, Nano Energy.

[32]  Jun Lu,et al.  Selective CO2 Reduction on 2D Mesoporous Bi Nanosheets , 2018, Advanced Energy Materials.

[33]  Andrew H. Proppe,et al.  2D Metal Oxyhalide‐Derived Catalysts for Efficient CO2 Electroreduction , 2018, Advanced materials.

[34]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[35]  Genevieve Saur,et al.  What Should We Make with CO2 and How Can We Make It , 2018 .

[36]  Jun Deng,et al.  Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate , 2018, Nature Communications.

[37]  V. V. Speybroeck,et al.  Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification , 2017 .

[38]  Wei Liu,et al.  Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers. , 2017, Angewandte Chemie.

[39]  A. Bell,et al.  Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. , 2016, Journal of the American Chemical Society.

[40]  Rong Chen,et al.  Direct formate fuel cells: A review , 2016 .

[41]  Q. Schiermeier Germany’s renewable revolution awaits energy forecast , 2016, Nature.

[42]  Robert Vajtai,et al.  Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. , 2016, Nano letters.

[43]  R. Service Clean revolution. , 2015, Science.

[44]  Kendra Letchworth-Weaver,et al.  Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. , 2013, The Journal of chemical physics.

[45]  B. Pan,et al.  Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. , 2013, Journal of the American Chemical Society.

[46]  Qingsheng Wu,et al.  High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity , 2013 .

[47]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[48]  Matthew W Kanan,et al.  Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. , 2010, Journal of the American Chemical Society.

[49]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[50]  Henghui Zhou,et al.  Topotactic Transformation of Single‐Crystalline Precursor Discs into Disc‐Like Bi2S3 Nanorod Networks , 2008 .

[51]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[52]  Yinjuan Xie,et al.  Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. , 2006, The journal of physical chemistry. B.

[53]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[54]  T. Risse,et al.  Cluster, facets, and edges: site-dependent selective chemistry on model catalysts. , 2003, Chemical record.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .