CAD-based geometry parametrisation for shape optimisation using Non-uniform Rational B-splines

With the continuous growth in computing power, numerical optimisation is increasingly applied in shape optimisation using Computational Fluid Dynamics (CFD). Since CFD computations are expensive, gradient-based optimisation is preferable when the number of design variables is large. In particular the recent progress with adjoint solvers is important, as these solvers allow to compute the gradients at constant computational cost regardless of the number of design variables, and as a consequence enable the use of automatically derived and rich design spaces. One of the crucial steps in shape optimisation is the parametrisation of the geometry, which directly determines the design space and thus the final results. This thesis focuses on CAD-based parametrisations with the CAD model continuously updated in the design loop. An existing approach that automatically derives a parametrisation from the control points of a net of B-Spline patches is extended to include NURBS. Continuity constraints for water-tightness, tangency and curvature across patch interfaces are evaluated numerically and a basis for the resulting design space is computed using Singular Value Decomposition (SVD). A CAD-based shape optimisation framework is developed, coupling a flow solver, an adjoint solver, the in-house CAD kernel and a gradient-based optimiser. The flow sensitivities provided by the adjoint solver and the geometric sensitivities computed through automatic differentiation (AD) are assembled and provided to the optimiser. An extension to maintain the design space and hence enables use of a quasi-Newton method such as the BFGS algorithm is also presented and the convergence improvements are demonstrated. The framework is applied to three shape optimisation cases to show its effectiveness. The performance is assessed and analysed. The effect of parameters that can be chosen by the user are analysed over a range of cases and best practice choices are identified.

[1]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[2]  Jeroen A. S. Witteveen,et al.  Explicit Mesh Deformation Using Inverse Distance Weighting Interpolation , 2009 .

[3]  T. Liou,et al.  Fluid Flow in a 180 Deg Sharp Turning Duct With Different Divider Thicknesses , 1998 .

[4]  Andrea Walther,et al.  OPTIMISATION OF A U-BEND USING A CAD-BASED ADJOINT METHOD WITH DIFFERENTIATED CAD KERNEL , 2016 .

[5]  Cecil Armstrong,et al.  Optimizing parameterized CAD geometries using sensitivities based on adjoint functions , 2012 .

[6]  C. Allen,et al.  High-fidelity aerodynamic shape optimization using efficient orthogonal modal design variables with a constrained global optimizer , 2017 .

[7]  Joaquim R. R. A. Martins,et al.  AN AUTOMATED METHOD FOR SENSITIVITY ANALYSIS USING COMPLEX VARIABLES , 2000 .

[8]  Pierre Boulanger,et al.  CFD Based Wing Shape Optimization Through Gradient-Based Method , 2008 .

[9]  R. M. Hicks,et al.  An assessment of airfoil design by numerical optimization , 1974 .

[10]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[11]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[12]  F. Guibault,et al.  WING SHAPE OPTIMIZATION USING A CONSTRAINED NURBS SURFACE GEOMETRICAL REPRESENTATION , 2002 .

[13]  Sanjay Mittal,et al.  A method to carry out shape optimization with a large number of design variables , 2013 .

[14]  G. Strang Introduction to Linear Algebra , 1993 .

[15]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[16]  David J. J. Toal,et al.  Geometric Filtration Using Proper Orthogonal Decomposition for Aerodynamic Design Optimization , 2010 .

[17]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[18]  A. Jameson,et al.  Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation , 1996 .

[19]  Daniel J Poole,et al.  Control Point-Based Aerodynamic Shape Optimization Applied to AIAA ADODG Test Cases , 2015 .

[20]  David W. Zingg,et al.  Comparison of B-Spline Surface and Free-Form Deformation Geometry Control for Aerodynamic Optimization , 2017 .

[21]  Ezio Biglieri,et al.  Some properties of singular value decomposition and their applications to digital signal processing , 1989 .

[22]  Philippe Serré,et al.  Gradient-based optimization of parameterized CAD geometries , 2015 .

[23]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[24]  Rakesh Nagi,et al.  Migrating from IGES to STEP: one to one translation of IGES drawing to STEP drafting data , 2000 .

[25]  Ram D. Sriram,et al.  Data Exchange of Parametric CAD Models Using ISO 10303-108 , 2007 .

[26]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[27]  Marta Amalia Cordero Gracia,et al.  Adaptation of the computational grid to a moving wing-fuselage intersection via nurbs and radial basis , 2014 .

[28]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[29]  Raymond M. Hicks,et al.  Wing design by numerical optimization , 1977 .

[30]  Giovanni Lombardi,et al.  Use of the CFD for the Aerodynamic Optimization of the Car Shape: Problems and Application , 2009 .

[31]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[32]  A. Jameson,et al.  A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION , 2000 .

[33]  D. Zingg,et al.  Aerodynamic Shape Optimization of Wings Using a Parallel Newton-Krylov Approach , 2012 .

[34]  L. Talbot,et al.  Flow in Curved Pipes , 1983 .

[35]  Xiaocong Han,et al.  An adaptive geometry parametrization for aerodynamic shape optimization , 2014 .

[36]  Jens-Dominik Müller,et al.  Introducing STAMPS: an open-source discrete adjoint CFD solver using source-transformation AD , 2016 .

[37]  S. Timme,et al.  Wing-body junction optimisation with CAD-based parametrisation including a moving intersection , 2017 .

[38]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[39]  Rakesh Nagi,et al.  STEP-based feature extraction from STEP geometry for Agile manufacturing , 2000 .

[40]  C. Allen,et al.  Impact of Shape Parameterisation on Aerodynamic Optimisation of Benchmark Problem , 2016 .

[41]  Andreas Griewank,et al.  Automatic Differentiation of Algorithms: From Simulation to Optimization , 2000, Springer New York.

[42]  T. Verstraete,et al.  Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part II: Experimental Validation , 2013 .

[43]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[44]  Robert Hewson,et al.  Aerodynamic CFD Based Optimization of Police Car Using Bezier Curves , 2017 .

[45]  Andrea Walther,et al.  Recent Advances in Algorithmic Differentiation , 2012 .

[46]  Robert Haimes,et al.  Surface Mesh Movement Algorithm for Computer-Aided-Design-Based Aerodynamic Shape Optimization , 2016 .

[47]  H. Andrews,et al.  Singular value decompositions and digital image processing , 1976 .

[48]  M. Widhalm,et al.  CAD-BASED AERODYNAMIC SHAPE DESIGN OPTIMIZATION WITH THE DLR TAU CODE , 2010 .

[49]  R. Duvigneau,et al.  On the role played by NURBS weights in isogeometric structural shape optimization , 2010 .

[50]  Jens-Dominik Müller,et al.  On the performance of discrete adjoint CFD codes using automatic differentiation , 2005 .

[51]  David M. Price,et al.  A Modular Architecture for STEP , 1999 .

[52]  Yu Liang,et al.  Multi-objective robust airfoil optimization based on non-uniform rational B-spline (NURBS) representation , 2010 .

[53]  Hugo Gagnon,et al.  Geometry Generation of Complex Unconventional Aircraft with Application to High-Fidelity Aerodynamic Shape Optimization , 2013 .

[54]  Robert Hewson,et al.  Aerodynamic Drag Reduction of Emergency Response Vehicles , 2015 .

[55]  Armando Miguel Awruch,et al.  NURBS-based three-dimensional analysis of geometrically nonlinear elastic structures , 2014 .

[56]  Zuzana Kukelova,et al.  A Benchmark of Selected Algorithmic Differentiation Tools on Some Problems in Machine Learning and Computer Vision , 2016 .

[57]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[58]  Richard P. Dwight,et al.  Flow simulation and shape optimization for aircraft design , 2007 .

[59]  Chang-Yeol Joh Development of a NURBS-based wing design optimization system , 2003, 7th Korea-Russia International Symposium on Science and Technology, Proceedings KORUS 2003. (IEEE Cat. No.03EX737).

[60]  Andreas Griewank,et al.  A mathematical view of automatic differentiation , 2003, Acta Numerica.

[61]  Matthew Ming-Fai Yuen,et al.  Unified approach to curve shape modification , 1995, Comput. Aided Des..

[62]  JAMES DEMMEL,et al.  LAPACK: A portable linear algebra library for high-performance computers , 1990, Proceedings SUPERCOMPUTING '90.

[63]  Thomas D. Economon,et al.  Large-scale aircraft design using SU2 , 2015 .

[64]  C. Allen,et al.  Metric-Based Mathematical Derivation of Efficient Airfoil Design Variables , 2015 .

[65]  Michael J. Aftosmis,et al.  Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method , 2005 .

[66]  E. Andres,et al.  Domain versus boundary computation of flow sensitivities with the continuous adjoint method for aerodynamic shape optimization problems , 2012 .

[67]  H. Sobieczky Parametric Airfoils and Wings , 1999 .

[68]  Serkan Özgen,et al.  Implementation of Ball-Center Spring Analogy Mesh Deformation Technique with CFD Design Optimization , 2015 .

[69]  F. Blom Considerations on the spring analogy , 2000 .

[70]  D. X. Wang,et al.  Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part I: Methodology and Verification , 2010 .

[71]  Anthony A. Maciejewski,et al.  The Singular Value Decomposition: Computation and Applications to Robotics , 1989, Int. J. Robotics Res..

[72]  Stephen J. Chapman Fortran 90/95 for Scientists and Engineers , 1998 .

[73]  Daniel J Poole,et al.  Review of Aerofoil Parameterisation Methods for Aerodynamic Shape Optimisation , 2015 .

[74]  Andrea Walther,et al.  Algorithmic differentiation of the Open CASCADE Technology CAD kernel and its coupling with an adjoint CFD solver , 2018, Optim. Methods Softw..

[75]  Mariusz Pawlak,et al.  Optimisation of wind turbine blades , 2005 .

[76]  G. Saha,et al.  Fetal ECG extraction from single-channel maternal ECG using singular value decomposition , 1997, IEEE Transactions on Biomedical Engineering.

[77]  David A. Field,et al.  Education and training for CAD in the auto industry , 2004, Comput. Aided Des..

[78]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[79]  Ioannis K. Nikolos,et al.  Freeform Deformation Versus B-Spline Representation in Inverse Airfoil Design , 2008, J. Comput. Inf. Sci. Eng..

[80]  Tom Verstraete,et al.  Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part I: Numerical Method , 2013 .

[81]  Michael Bartholomew-Biggs,et al.  Nonlinear Optimization with Engineering Applications , 2008 .

[82]  SHAPE OPTIMIZATION USING THE CONTINUOUS ADJOINT METHOD AND VOLUMETRIC NURBS ON GPUS , 2015 .

[83]  Roy Koomullil,et al.  Mesh Deformation Approaches A Survey , 2016 .

[84]  Daniel J Poole,et al.  Aerofoil Design Variable Extraction for Aerodynamic Optimisation , 2013 .

[85]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[86]  S. Eyi,et al.  Three Dimensional Design Optimization Using Adjoint Method , 2016 .

[87]  Yang Wang,et al.  Fixed point discrete adjoint of SIMPLE-like solvers , 2015 .

[88]  V. Schulz,et al.  Three-Dimensional Large-Scale Aerodynamic Shape Optimization Based on Shape Calculus , 2013 .

[89]  Von Karman,et al.  CADO : a Computer Aided Design and Optimization Tool for Turbomachinery Applications , 2010 .

[90]  Yang Wang,et al.  GEOMETRIC CONTINUITY CONSTRAINTS FOR ADJACENT NURBS PATCHES IN SHAPE OPTIMISATION , 2016 .

[91]  François Guibault,et al.  Aerodynamic Optimisation of a Realistic Aircraft Wing , 2005 .

[92]  Jens-Dominik Müller,et al.  Pseudo-timestepping and verification for automatic differentiation derived CFD codes , 2011 .

[93]  Jens-Dominik Müller,et al.  CAD‐based shape optimisation with CFD using a discrete adjoint , 2014 .

[94]  C. Allen,et al.  A Geometric Comparison of Aerofoil Shape Parameterisation Methods , 2016 .

[95]  Shiv Gopal Kapoor,et al.  CAD data visualization for machining simulation using the STEP standard , 2001 .

[96]  Jing Li,et al.  Multi-Objective Optimization of a U-Bend for Minimal Pressure Loss and Maximal Heat Transfer Performance in Internal Cooling Channels , 2013 .

[97]  Robert Haimes,et al.  A CAD-Free and a CAD-Based Geometry Control System for Aerodynamic Shape Optimization , 2005 .

[98]  Robert Haimes,et al.  Adjoint-Based Design Optimization Using CAD Parameterization Through CAPRI , 2012 .

[99]  Tom Verstraete,et al.  Adjoint Optimization of an Internal Cooling Channel U-Bend , 2015 .

[100]  Juan J. Alonso,et al.  Stanford University Unstructured (SU2): Analysis and Design Technology for Turbulent Flows , 2014 .

[101]  Walter S. Brainerd,et al.  Programmer's guide to Fortran 90 , 1990 .

[102]  A. Jameson,et al.  Optimization Methods in Computational Fluid Dynamics , 2010 .

[103]  Yu Liang,et al.  Robust Multi-Objective Wing Design Optimization Via CFD Approximation Model , 2011 .

[104]  Tim Bray,et al.  Internet Engineering Task Force (ietf) the Javascript Object Notation (json) Data Interchange Format , 2022 .

[105]  D. Ghate,et al.  Using Automatic Differentiation for Adjoint CFD Code Development , 2005 .

[106]  Daniel J Poole,et al.  Efficient Modal Design Variables Applied to Aerodynamic Optimization of a Modern Transport Wing , 2016 .

[107]  Cecil Armstrong,et al.  Linking Adjoint Sensitivity Maps with CAD Parameters , 2008 .

[108]  Marcus Meyer,et al.  CAD-Based Adjoint Shape Optimisation of a One-Stage Turbine With Geometric Constraints , 2015 .

[109]  Shi-Min Hu,et al.  A second order algorithm for orthogonal projection onto curves and surfaces , 2005, Comput. Aided Geom. Des..

[110]  J. Trépanier,et al.  Airfoil shape optimization using a nonuniform rational B-splines parameterization under thickness constraint , 2006 .

[111]  Laurent Hascoët,et al.  TAPENADE 2.1 user's guide , 2004 .

[112]  Kazuo Yonekura,et al.  A Shape Parameterization Method Using Principal Component Analysis in Applications to Parametric Shape Optimization , 2014 .

[113]  Carsten Othmer,et al.  Adjoint methods for car aerodynamics , 2014, Journal of Mathematics in Industry.

[114]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[115]  Johan Zaya Aerodynamic Optimization of Ground Vehicles with the Use of Fluent’s Adjoint Solver , 2013 .

[116]  Joel Brezillon,et al.  Aerodynamic shape optimization using simultaneous pseudo-timestepping , 2005 .

[117]  Mateusz Gugala Output-based mesh adaptation using geometric multi-grid for error estimation , 2019 .

[118]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[119]  Jens-Dominik Mueller,et al.  Adjoint Optimisation of Internal Turbine Cooling Channel Using NURBS-Based Automatic and Adaptive Parametrisation Method , 2017 .

[120]  F. Christakopoulos Sensitivity computation and shape optimisation in aerodynamics using the adjoint methodology and Automatic Differentiation. , 2012 .

[121]  A. M. Awruch,et al.  Optimal shape of axisymmetric solids using NURBS and automatic differentiation , 2014 .

[122]  Thomas D. Economon,et al.  Stanford University Unstructured (SU 2 ): An open-source integrated computational environment for multi-physics simulation and design , 2013 .

[123]  Marius Swoboda,et al.  A Full Parametric Model for Turbomachinery Blade Design and Optimisation , 2004, DAC 2004.

[124]  Changmin Son,et al.  Optimisation of a 180° U-shaped bend shape for a turbine blade cooling passage leading to a pressure loss coefficient of approximately 0.6 , 2016 .

[125]  Wei Wang,et al.  Reconsideration of T-spline data models and their exchanges using STEP , 2016, Comput. Aided Des..

[126]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[127]  Yang Wang,et al.  Stabilisation of Discrete Adjoint Solvers for Incompressible Flow , 2015 .

[128]  Andrea Walther,et al.  NURBS-based and Parametric-based Shape Optimisation with differentiated CAD Kernel , 2017 .

[129]  Martin Bücker,et al.  Automatic differentiation : applications, theory, and implementations , 2006 .

[130]  John F. Dannenhoffer,et al.  Design Sensitivity Calculations Directly on CAD-based Geometry , 2015 .

[131]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[132]  Soonhung Han,et al.  A method to exchange procedurally represented 2D CAD model data using ISO 10303 STEP , 2011, Comput. Aided Des..

[133]  Marcus Meyer,et al.  Parametric design velocity computation for CAD-based design optimization using adjoint methods , 2018, Engineering with Computers.

[134]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[135]  R. Duvigneau Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization , 2005 .

[136]  L. Hogben Handbook of Linear Algebra , 2006 .

[137]  D. Mavriplis Discrete Adjoint-Based Approach for Optimization Problems on Three-Dimensional Unstructured Meshes , 2007 .

[138]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[139]  Uwe Naumann,et al.  The Art of Differentiating Computer Programs - An Introduction to Algorithmic Differentiation , 2012, Software, environments, tools.

[140]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[141]  John L. Crassidis,et al.  Generalizations of the complex-step derivative approximation , 2006 .

[142]  Joan Wellington,et al.  INITIAL GRAPHICS EXCHANGE SPECIFICATION (IGES), VERSION 3.0 , 1986 .

[143]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[144]  스플라인 유한요소법을 이용한 제어점의 위치 및 가중치를 설계변수로 하는 2차원 형상최적설계 연구 = A study on the 2D isogeometric shape optimization considering both control point positions and weights as design variables , 2013 .

[145]  Joaquim R. R. A. Martins,et al.  GeoMACH: Geometry-Centric MDAO of Aircraft Configurations with High Fidelity , 2012 .

[146]  Jens-Dominik Mueller,et al.  CFD Development with Automatic Differentiation , 2012 .

[147]  R. Wells,et al.  Blading Aerodynamics Design Optimization With Mechanical and Aeromechanical Constraints , 2006 .

[148]  Rakesh K. Kapania,et al.  A POD-based Reduced Order Design Scheme for Shape Optimization of Air Vehicles , 2012 .

[149]  G. Venter,et al.  An Efficient Scheme for Describing Airfoils Using Non-Uniform Rational B-Splines , 2012 .

[150]  Armen Jaworski,et al.  Toward Modular Multigrid Design Optimisation , 2008 .

[151]  C. Allen,et al.  Wing aerodynamic optimization using efficient mathematically-extracted modal design variables , 2018 .

[152]  A. Tzanakis Duct optimization using CFD software `ANSYS Fluent Adjoint Solver' , 2014 .

[153]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[154]  Tom Verstraete,et al.  Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part I: Methodology , 2010 .

[155]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[156]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[157]  Yi-sheng Gao,et al.  Automatic differentiation based discrete adjoint method for aerodynamic design optimization on unstructured meshes , 2017 .

[158]  Shlomo Tsach,et al.  A new efficient technology of aerodynamic design based on CFD driven optimization , 2006 .

[159]  Cecil Armstrong,et al.  Efficient CAD-based Aerodynamic Design Optimization with Adjoint CFD Data , 2013 .

[160]  Youdong Liang,et al.  GCn continuity conditions for adjacent rational parametric surfaces , 1995, Comput. Aided Geom. Des..

[161]  Jean Utke,et al.  Advances in Automatic Differentiation , 2008 .

[162]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[163]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[164]  Jens-Dominik Müller,et al.  Preparation and assembly of discrete adjoint CFD codes , 2011 .

[165]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[166]  Tom Verstraete,et al.  CAD Integrated Multipoint Adjoint-Based Optimization of a Turbocharger Radial Turbine , 2017 .

[167]  Marcus Meyer,et al.  Linking Parametric CAD with Adjoint Surface Sensitivities , 2016 .

[168]  He Zhijun,et al.  Advanced curve and surface design in CAD system using STEP , 1993, Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation.

[169]  Joaquim R. R. A. Martins,et al.  Multimodality in aerodynamic wing design optimization , 2017 .

[170]  Vincent Herbert,et al.  Hybrid method for aerodynamic shape optimization in automotive industry , 2004 .

[171]  Carsten Othmer,et al.  CFD OPTIMIZATION VIA SENSITIVITY-BASED SHAPE MORPHING , 2011 .

[172]  W. K. Anderson,et al.  Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation , 1997 .

[173]  Marcus Meyer,et al.  CAD-Based Aerodynamic Optimization of a Compressor Stator Using Conventional and Adjoint-Driven Approaches , 2017 .

[174]  Jiri Blazek,et al.  Computational Fluid Dynamics: Principles and Applications , 2001 .

[175]  Timothy Leung A Newton-Krylov Approach to Aerodynamic Shape Optimization in Three Dimensions , 2010 .

[176]  Jens-Dominik Müller,et al.  Adjoint-Based Aerodynamic Optimisation of Wing Shape Using Non-uniform Rational B-Splines , 2018, Computational Methods in Applied Sciences.

[177]  G. Becker,et al.  An advanced NURBS fitting procedure for post-processing of grid-based shape optimizations , 2011 .

[178]  D. Zingg,et al.  Multimodality and Global Optimization in Aerodynamic Design , 2013 .

[179]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[180]  Chih-Chin Lai,et al.  Digital Image Watermarking Using Discrete Wavelet Transform and Singular Value Decomposition , 2010, IEEE Transactions on Instrumentation and Measurement.

[181]  Feng Liu,et al.  Comparisons of Three Geometric Representations of Airfoils for Aerodynamic Optimization , 2003 .

[182]  Ernesto Benini,et al.  Aerodynamic shape optimization of aircraft components using an advanced multi-objective evolutionary approach , 2015 .

[183]  Siam Rfview,et al.  CONVERGENCE CONDITIONS FOR ASCENT METHODS , 2016 .

[184]  Joaquim R. R. A. Martins,et al.  THE CONNECTION BETWEEN THE COMPLEX-STEP DERIVATIVE APPROXIMATION AND ALGORITHMIC DIFFERENTIATION , 2001 .

[185]  Yang Wang Robust and stable discrete adjoint solver development for shape optimisation of incompressible flows with industrial applications , 2017 .

[186]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[187]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[188]  Hiroaki Chiyokura,et al.  A G1 connection around complicated curve meshes using C1 NURBS Boundary Gregory Patches , 2001, Comput. Aided Des..

[189]  Christian B Allen,et al.  Three-Dimensional Subdivision Parameterisation for Aerodynamic Shape Optimisation , 2017 .

[190]  Ismael Sanchez Torreguitart,et al.  CAD KERNEL AND GRID GENERATION ALGORITHMIC DIFFERENTIATION FOR TURBOMACHINERY ADJOINT OPTIMIZATION , 2016 .

[191]  Markus Widhalm,et al.  Non-uniform rational B-splines-based aerodynamic shape design optimization with the DLR TAU code , 2012 .

[192]  Paul H. Calamai,et al.  Projected gradient methods for linearly constrained problems , 1987, Math. Program..

[193]  Andrew S. Thelen,et al.  Aerodynamic Design of the RAE 2822 in Transonic Viscous Flow: Single- and Multi-point Optimization Studies , 2017 .

[194]  Shenren Xu,et al.  CAD-based CFD shape optimisation using discrete adjoint solvers , 2015 .

[195]  Jens-Dominik Mueller,et al.  CAD-free vs CAD-based parametrisation method in adjoint-based aerodynamic shape optimization , 2016 .

[196]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[197]  M. Giles,et al.  Algorithm Developments for Discrete Adjoint Methods , 2003 .

[198]  Michael J. Pratt,et al.  Introduction to ISO 10303 - the STEP Standard for Product Data Exchange. pp , 2001, J. Comput. Inf. Sci. Eng..

[199]  Alexander Heinecke,et al.  Towards High-Performance Optimizations of the Unstructured Open-Source SU2 Suite , 2015 .

[200]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[201]  A. Ronch,et al.  Aerodynamic Shape Optimisation of Benchmark Problems Using SU2 , 2018 .

[202]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[203]  Stephen J. Rock,et al.  The Use of STEP to Integrate Design and Solid Freeform Fabrication , 1995 .

[204]  Richard Cozzens CATIA V5 Workbook Release 19 , 2007 .

[205]  Barak A. Pearlmutter,et al.  Automatic Differentiation of Algorithms for Machine Learning , 2014, ArXiv.

[206]  J. Alonso,et al.  SU2: An Open-Source Suite for Multiphysics Simulation and Design , 2016 .

[207]  David Prochazka,et al.  Implementation of NURBS curve derivatives in engineering practice , 2007 .

[208]  J. Samareh Aerodynamic Shape Optimization Based on Free-form Deformation , 2004 .

[209]  Jens-Dominik Müller,et al.  Goal-Based Flow Optimisation for Automotive Design , 2012 .

[210]  Dominic Jones,et al.  CAD-based shape optimisation using adjoint sensitivities , 2011 .

[211]  Jürgen F. Mayer,et al.  Three-Dimensional Optimization of Turbomachinery Bladings Using Sensitivity Analysis , 2003 .

[212]  C. Othmer A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows , 2008 .

[213]  Yong Hong Li,et al.  Aerodynamic Shape Deformation of Underwing Nacelle-Pylon Configuration Based on B-Spline Surface , 2013 .

[214]  W. K. Anderson,et al.  Sensitivity Analysis for Navier-Stokes Equations on Unstructured Meshes Using Complex Variables , 2001 .

[215]  F. Guibault,et al.  Optimized Nonuniform Rational B-Spline Geometrical Representation for Aerodynamic Design of Wings , 2001 .

[216]  Serhat Hosder,et al.  Investigation of the Effectiveness of Selected Shape Parameterization Techniques for Robust Aerodynamic Optimization , 2017 .

[217]  Jorge Nocedal,et al.  Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” , 2011, TOMS.

[218]  Viktoria Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[219]  S Sivakumar,et al.  A feature-based system for CAD/CAM integration through STEP file for cylindrical parts , 2013 .

[220]  Lun Li,et al.  Geometric algorithm for point projection and inversion onto Bézier surfaces , 2009, Frontiers of Computer Science in China.

[221]  Wei Sun,et al.  Direct slicing of STEP based NURBS models for layered manufacturing , 2005, Comput. Aided Des..

[222]  Joaquim R. R. A. Martins Wing Design via Numerical Optimization , 2014 .

[223]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[224]  Esmeide Leal,et al.  Simple Method for Constructing NURBS Surfaces from Unorganized Points , 2010, IMR.

[225]  Jun-Hai Yong,et al.  A counterexample on point inversion and projection for NURBS curve , 2007, Comput. Aided Geom. Des..

[226]  Christopher L. Rumsey,et al.  Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations , 2007 .

[227]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[228]  Forrester T. Johnson,et al.  Modi cations and Clari cations for the Implementation of the Spalart-Allmaras Turbulence Model , 2011 .

[229]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[230]  Wolf-Heinrich Hucho,et al.  Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering , 2013 .

[231]  Bernd Simeon,et al.  Algorithmic Aspects of Isogeometric Shape Optimization , 2015 .

[232]  Timothy A. Davis,et al.  Algorithm 933: Reliable calculation of numerical rank, null space bases, pseudoinverse solutions, and basic solutions using suitesparseQR , 2013, TOMS.

[233]  G. Janiga,et al.  Optimization and Computational Fluid Dynamics , 2008 .

[234]  Jens-Dominik Mueller,et al.  Essentials of Computational Fluid Dynamics , 2015 .

[235]  Jens-Dominik Müller,et al.  Adjoint based design optimisation of an internal cooling channel U-bend for minimized pressure losses , 2017 .

[236]  Dominique Pelletier,et al.  Airfoil Shape Optimization Using NURBS Representation Under Thickness Constraint , 2004 .

[237]  Wang Xudong,et al.  Shape Optimization of Wind Turbine Blades , 2009 .

[238]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[239]  Jean-Yves Trbpanier,et al.  Wing Aerodynamic Design Using an Optimized NURBS Geometrical Representation , 2000 .

[240]  Marcus Meyer,et al.  Stabilisation of discrete steady adjoint solvers , 2015, J. Comput. Phys..

[241]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[242]  Charles R. Severance,et al.  Discovering JavaScript Object Notation , 2012, Computer.

[243]  Kai-Uwe Bletzinger,et al.  The Vertex Morphing method for node-based shape optimization , 2014 .

[244]  A. M. Awruch,et al.  Shape optimization of shell structures based on NURBS description using automatic differentiation , 2011 .

[245]  YingLiang Ma,et al.  Point inversion and projection for NURBS curve and surface: Control polygon approach , 2003, Comput. Aided Geom. Des..

[246]  Cecil Armstrong,et al.  Aerodynamic Shape Optimization Using Feature based CAD Systems and Adjoint Methods , 2017 .

[247]  David W. Zingg,et al.  Investigation of Multimodality in Aerodynamic Shape Optimization Based on the Reynolds Averaged Navier-Stokes Equations , 2017 .

[248]  Andy J. Keane,et al.  A Study of Shape Parameterisation Methods for Airfoil Optimisation , 2004 .