Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics

Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

[1]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[2]  A Paul Alivisatos,et al.  Quantum-dot-based cell motility assay. , 2003, Science's STKE : signal transduction knowledge environment.

[3]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[4]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[5]  H. Vogel,et al.  Labeling of fusion proteins with synthetic fluorophores in live cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[7]  Uri Banin,et al.  Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods , 2004, Science.

[8]  Sangeeta N. Bhatia,et al.  Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking , 2004 .

[9]  Fei Liu,et al.  Labeling proteins with small molecules by site-specific posttranslational modification. , 2004, Journal of the American Chemical Society.

[10]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[11]  Yanli Liu,et al.  Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. , 2004, Bioconjugate chemistry.

[12]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[13]  M. Bruchez,et al.  Optical coding of mammalian cells using semiconductor quantum dots. , 2004, Analytical biochemistry.

[14]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[15]  Sergey K. Poznyak,et al.  Quantum Dot Chemiluminescence , 2004 .

[16]  G. Nolan,et al.  In vivo targeting of organic calcium sensors via genetically selected peptides. , 2004, Chemistry & biology.

[17]  Lars Montelius,et al.  In vitro sliding of actin filaments labelled with single quantum dots. , 2004, Biochemical and biophysical research communications.

[18]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[19]  Peter E Barker,et al.  Semiconductor nanocrystal probes for human metaphase chromosomes. , 2004, Nucleic acids research.

[20]  Shimon Weiss,et al.  Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. , 2004, Journal of the American Chemical Society.

[21]  Taekjip Ha,et al.  Near-complete suppression of quantum dot blinking in ambient conditions. , 2004, Journal of the American Chemical Society.

[22]  Igor Nabiev,et al.  Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. , 2004, Analytical biochemistry.

[23]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[24]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[25]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[26]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[27]  Shimon Weiss,et al.  The power and prospects of fluorescence microscopies and spectroscopies. , 2003, Annual review of biophysics and biomolecular structure.

[28]  Moungi G Bawendi,et al.  Oligomeric ligands for luminescent and stable nanocrystal quantum dots. , 2003, Journal of the American Chemical Society.

[29]  Itamar Willner,et al.  Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. , 2003, Journal of the American Chemical Society.

[30]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[31]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[32]  F Tokumasu,et al.  Development and application of quantum dots for immunocytochemistry of human erythrocytes , 2003, Journal of microscopy.

[33]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[34]  Xiaogang Peng,et al.  Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging , 2003 .

[35]  K. H. Nealson,et al.  Quantum Dots as Strain- and Metabolism-Specific Microbiological Labels , 2003, Applied and Environmental Microbiology.

[36]  T. Aida,et al.  Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. , 2003 .

[37]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[38]  Shuming Nie,et al.  Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. , 2003, Journal of the American Chemical Society.

[39]  Stella M. Hurtley,et al.  The Future Looks Bright ... , 2003, Science.

[40]  Kenji Yamamoto,et al.  Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. , 2003, Biochemical and biophysical research communications.

[41]  Yong Taik Lim,et al.  Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging , 2003, Molecular imaging.

[42]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[43]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[44]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[45]  Shuming Nie,et al.  Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. , 2002, Journal of biomedical optics.

[46]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[48]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[49]  Christine M. Micheel,et al.  Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks , 2002 .

[50]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[51]  Robert E Campbell,et al.  New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. , 2002, Journal of the American Chemical Society.

[52]  James McBride,et al.  Targeting cell surface receptors with ligand-conjugated nanocrystals. , 2002, Journal of the American Chemical Society.

[53]  H. Mattoussi,et al.  Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. , 2002, Analytical chemistry.

[54]  R. Ebright,et al.  Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. , 2001, Journal of the American Chemical Society.

[55]  Jessica O. Winter,et al.  Recognition Molecule Directed Interfacing Between Semiconductor Quantum Dots and Nerve Cells , 2001 .

[56]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .

[57]  M. Dahan,et al.  Time-gated biological imaging by use of colloidal quantum dots. , 2001, Optics letters.

[58]  S. Pathak,et al.  Hydroxylated quantum dots as luminescent probes for in situ hybridization. , 2001, Journal of the American Chemical Society.

[59]  A. Rogach,et al.  Colloidally Prepared CdHgTe and HgTe Quantum Dots with Strong Near‐Infrared Luminescence , 2001 .

[60]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[61]  Philippe Guyot-Sionnest,et al.  n-type colloidal semiconductor nanocrystals , 2000, Nature.

[62]  K D Wittrup,et al.  Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[64]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[65]  Moungi G. Bawendi,et al.  Organometallic Synthesis and Spectroscopic Characterization of Manganese-Doped CdSe Nanocrystals , 2000 .

[66]  Alexander Eychmüller,et al.  Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals , 1999 .

[67]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[68]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[69]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[70]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[71]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[72]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[73]  Uri Banin,et al.  Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots , 1996 .

[74]  Uri Banin,et al.  Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals , 1996 .

[75]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[76]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[77]  J. Bonner,et al.  Differentiation , 1968, Nature.