A Self-Assembled Nanoporous Polyelectrolytic Interlayer for Highly Stable Zinc Metal Anodes

[1]  Yang Song,et al.  Metal–Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries , 2022, Nano-Micro Letters.

[2]  C. Li,et al.  In Situ Polymerization of Ionic Liquid with Tunable Phase Separation for Highly Reversible and Ultralong Cycle Life Zn-Ion Battery. , 2022, Nano letters.

[3]  Yuandong Tian,et al.  Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity , 2022, Energy Storage Materials.

[4]  H. Fan,et al.  A Molecular‐Sieve Electrolyte Membrane enables Separator‐Free Zinc Batteries with Ultralong Cycle Life , 2022, Advanced materials.

[5]  Licheng Miao,et al.  Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries , 2022, Chemical science.

[6]  Lin Xu,et al.  Steric Molecular Combing Effect Enables Ultrafast Self-Healing Electrolyte in Quasi-Solid-State Zinc-Ion Batteries , 2022, ACS Energy Letters.

[7]  Ning Zhang,et al.  Functional carbon materials for high-performance Zn metal anodes , 2022, Journal of Energy Chemistry.

[8]  C. Li,et al.  Electrocrystallization Orientation Regulation of Zinc Metal Anodes: Strategies and Challenges , 2022, Energy Storage Materials.

[9]  Haoshen Zhou,et al.  Regulating Water Activity for Rechargeable Zinc-Ion Batteries: Progress and Perspective , 2022, ACS Energy Letters.

[10]  Qiaobao Zhang,et al.  Electrolyte additive engineering for aqueous Zn ion batteries , 2022, Energy Storage Materials.

[11]  Yuwei Zhao,et al.  Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries , 2022, Nature Communications.

[12]  Licheng Miao,et al.  Cholinium Cations Enable Highly Compact and Dendrite‐Free Zn Metal Anodes in Aqueous Electrolytes , 2022, Advanced Functional Materials.

[13]  Ting-Ting Su,et al.  Stripy zinc array with preferential crystal plane for the ultra‐long lifespan of zinc metal anodes for zinc ion batteries , 2022, EcoMat.

[14]  Xiaobo Ji,et al.  High‐Yield Carbon Dots Interlayer for Ultra‐Stable Zinc Batteries , 2022, Advanced Energy Materials.

[15]  Lin Xu,et al.  Zwitterionic Bifunctional Layer for Reversible Zn Anode , 2022, ACS Energy Letters.

[16]  Xiaoping Zhou,et al.  Diminishing Interfacial Turbulence by Colloid‐Polymer Electrolyte to Stabilize Zinc Ion Flux for Deep‐Cycling Zn Metal Batteries , 2022, Advanced materials.

[17]  Jinqiu Zhou,et al.  New Type of Dynamically "Solid-Liquid" Interconvertible Electrolyte for High-Rate Zn Metal Battery. , 2022, Nano letters.

[18]  Yongfeng Zhou,et al.  Toward Hydrogen‐Free and Dendrite‐Free Aqueous Zinc Batteries: Formation of Zincophilic Protective Layer on Zn Anodes , 2022, Advanced science.

[19]  M. Zhu,et al.  A novel strategy for enhancing comprehensive properties of polyacrylate coating: Incorporation of highly dispersed zinc ions by using polyacrylic acid as carrier , 2022, Progress in Organic Coatings.

[20]  L. Yi,et al.  Achieving high-rate and high-capacity Zn metal anodes via a three-in-one carbon protective layer , 2022, Journal of Materials Chemistry A.

[21]  T. Zhai,et al.  An anticorrosive zinc metal anode with ultra-long cycle life over one year , 2022, Energy & Environmental Science.

[22]  Yang Yang,et al.  Probe the Localized Electrochemical Environment Effects and Electrode Reaction Dynamics for Metal Batteries using In Situ 3D Microscopy , 2021, Advanced Energy Materials.

[23]  F. Huo,et al.  Hydrophilic Silica Spheres Layer as Ions Shunt for Enhanced Zn Metal Anode , 2021, Chemical Engineering Journal.

[24]  Chenyang Zhao,et al.  A Dynamic and Self‐Adapting Interface Coating for Stable Zn‐Metal Anodes , 2021, Advanced materials.

[25]  Xianwen Wu,et al.  A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode , 2021 .

[26]  J. Choi,et al.  Highly Reversible, Grain‐Directed Zinc Deposition in Aqueous Zinc Ion Batteries , 2021, Advanced Energy Materials.

[27]  Huisheng Peng,et al.  Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make High‐Performance Zn‐Ion Batteries , 2021, Advanced Functional Materials.

[28]  Feng Wu,et al.  Ultrathin Surface Coating of Nitrogen‐Doped Graphene Enables Stable Zinc Anodes for Aqueous Zinc‐Ion Batteries , 2021, Advanced materials.

[29]  Zaiping Guo,et al.  Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc‐Ion Batteries , 2021, Advanced Functional Materials.

[30]  Mengqiu Long,et al.  Surface‐Preferred Crystal Plane for a Stable and Reversible Zinc Anode , 2021, Advanced materials.

[31]  Pei Dong,et al.  Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery , 2021 .

[32]  L. Ding,et al.  Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries. , 2021, ACS applied materials & interfaces.

[33]  Licheng Miao,et al.  Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries†‡ , 2021, Chemical science.

[34]  D. Mikhailova,et al.  A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries , 2021, Nanomaterials.

[35]  Xiangyang Zhou,et al.  Driving the Interfacial Ion-Transfer Kinetics by Mesoporous TiO2 Spheres for High-Performance Aqueous Zn-Ion Batteries. , 2021, ACS applied materials & interfaces.

[36]  Xiaobo Ji,et al.  Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery , 2021 .

[37]  Guozhao Fang,et al.  Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries , 2021 .

[38]  Jiang Zhou,et al.  Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. , 2020, ACS nano.

[39]  Yuezhan Feng,et al.  Stabilization Perspective on Metal Anodes for Aqueous Batteries , 2020, Advanced Energy Materials.

[40]  Mietek Jaroniec,et al.  Roadmap for advanced aqueous batteries: From design of materials to applications , 2020, Science Advances.

[41]  H. Tong,et al.  Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries , 2020 .

[42]  Jiujun Zhang,et al.  Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries , 2020, Advanced Functional Materials.

[43]  Xiaobo Ji,et al.  Insights into Three-dimensional Dendrite-free Zinc Anode on Copper Mesh with Zinc-oriented Polyacrylamide Electrolyte Additive. , 2019, Angewandte Chemie.

[44]  C. Zhi,et al.  Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries , 2019, ACS Applied Energy Materials.

[45]  Nigel P. Brandon,et al.  Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries , 2019, Joule.

[46]  K. Lian,et al.  Lithium polyacrylate-polyacrylamide blend as polymer electrolytes for solid-state electrochemical capacitors , 2018, Electrochemistry Communications.

[47]  C. Zhi,et al.  Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries , 2018, Advanced Energy Materials.

[48]  Fei Wang,et al.  Highly reversible zinc metal anode for aqueous batteries , 2018, Nature Materials.

[49]  T. Fisher,et al.  Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors , 2018, Nature Communications.

[50]  Ya‐Xia Yin,et al.  A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. , 2018, Angewandte Chemie.

[51]  Jordan Marinaccio,et al.  Aqueous batteries as grid scale energy storage solutions , 2017 .

[52]  Serdal Kirmizialtin,et al.  A Chemical Template for Synthesis of Molecular Sheets of Calcium Carbonate , 2016, Scientific Reports.

[53]  Thomas Swift,et al.  The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. , 2016, Soft matter.

[54]  J. Kenny,et al.  Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal , 2015 .

[55]  R. Ștefan,et al.  IR and Raman Investigation of Some Poly(acrylic) Acid Gels in Aqueous and Neutralized State , 2015 .

[56]  Aldo Steinfeld,et al.  Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO , 2014, Chemistry of materials : a publication of the American Chemical Society.

[57]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[58]  M. Todică,et al.  Spectroscopy of a Gamma Irradiated Poly(Acrylic Acid)-Clotrimazole System , 2011 .

[59]  S. Ali,et al.  Micro-solvation of the Zn2+ ion-a case study. , 2009, Physical chemistry chemical physics : PCCP.

[60]  P. Fawell,et al.  In Situ FTIR-ATR Examination of Poly(acrylic acid) Adsorbed onto Hematite at Low pH , 2003 .

[61]  Kenichi Nakashima,et al.  Infrared, Raman, and Near-Infrared Spectroscopic Evidence for the Coexistence of Various Hydrogen-Bond Forms in Poly(acrylic acid) , 1997 .

[62]  D. M. Carey,et al.  Measurement of the Raman Spectrum of Liquid Water , 1996 .

[63]  S. Koda,et al.  Raman spectroscopic studies on the interaction between counterion and polyion. , 1982, Biophysical chemistry.