Coding Efficiency of Fly Motion Processing Is Set by Firing Rate, Not Firing Precision
暂无分享,去创建一个
Alexander Borst | Hubert Eichner | Deusdedit Lineu Spavieri | A. Borst | Hubert Eichner | D. Spavieri
[1] J. Gibbons,et al. Nonparametric Statistical Inference , 2020, International Encyclopedia of Statistical Science.
[2] A. Borst,et al. Robust Coding of Ego-Motion in Descending Neurons of the Fly , 2009, The Journal of Neuroscience.
[3] A. Borst,et al. Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.
[4] Alexander Borst,et al. Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.
[5] Cyrus P Billimoria,et al. Information rate and spike-timing precision of proprioceptive afferents. , 2007, Journal of neurophysiology.
[6] Alexander Borst,et al. Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.
[7] A. Borst,et al. Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.
[8] P. Sterling,et al. How Much the Eye Tells the Brain , 2006, Current Biology.
[9] Inés Samengo,et al. Spike-timing precision underlies the coding efficiency of auditory receptor neurons. , 2006, Journal of neurophysiology.
[10] M. D. Ernst,et al. Nonparametric Statistical Inference, Fourth Edition , 2005 .
[11] Alexander Borst,et al. Effects of Mean Firing on Neural Information Rate , 2001, Journal of Computational Neuroscience.
[12] D. Cherix,et al. Behavior of Calliphora vicina (Diptera, Calliphoridae) Under Extreme Conditions , 1999, Journal of Insect Behavior.
[13] Barry J. Richmond,et al. Unbiased measures of transmitted information and channel capacity from multivariate neuronal data , 1991, Biological Cybernetics.
[14] T. Collett,et al. Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.
[15] R. Hengstenberg,et al. Das augenmuskelsystem der stubenfliege musca domestica , 1971, Kybernetik.
[16] Alexander Borst,et al. Noise, Not Stimulus Entropy, Determines Neural Information Rate , 2004, Journal of Computational Neuroscience.
[17] Martin Egelhaaf,et al. Impact of Photon Noise on the Reliability of a Motion-Sensitive Neuron in the Fly's Visual System , 2003, The Journal of Neuroscience.
[18] A. Borst,et al. Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly , 2003, The Journal of Neuroscience.
[19] A. Borst,et al. Adaptation of response transients in fly motion vision. II: Model studies , 2003, Vision Research.
[20] A. Borst,et al. Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.
[21] A. Borst,et al. Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.
[22] A. Borst,et al. Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.
[23] M. Egelhaaf,et al. Outdoor performance of a motion-sensitive neuron in the blowfly , 2001, Vision Research.
[24] A Borst,et al. Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.
[25] Lorenz Bartosch. GENERATION OF COLORED NOISE , 2001 .
[26] G D Lewen,et al. Neural coding of naturalistic motion stimuli , 2001, Network.
[27] Dimitris G. Manolakis,et al. Statistical and Adaptive Signal Processing , 2000 .
[28] S. Laughlin,et al. Temperature and the temporal resolving power of fly photoreceptors , 2000, Journal of Comparative Physiology A.
[29] Warzecha,et al. Temperature-dependence of neuronal performance in the motion pathway of the blowfly calliphora erythrocephala , 1999, The Journal of experimental biology.
[30] Michael J. Berry,et al. Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.
[31] Boualem Boashash,et al. The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..
[32] J. Ruppersberg. Ion Channels in Excitable Membranes , 1996 .
[33] Bowler,et al. The development of thermotolerance protects blowfly flight muscle mitochondrial function from heat damage , 1995, The Journal of experimental biology.
[34] D. Stavenga,et al. A THREE-COMPARTMENT MODEL DESCRIBING TEMPERATURE CHANGES IN TETHERED FLYING BLOWFLIES , 1993 .
[35] Bernd Heinrich,et al. The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation , 1993 .
[36] T. Casey. Biophysical Ecology and Heat Exchange in Insects , 1992 .
[37] Roland Hengstenberg,et al. Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process , 1991 .
[38] W. Gronenberg,et al. Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.
[39] D. Stavenga,et al. Temperature Dependence of Receptor Potential and Noise in Fly (Calliphora erythrocephala) Photoreceptor Cells , 1990 .
[40] S B Laughlin,et al. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[41] B. Hille,et al. Ionic channels of excitable membranes , 2001 .
[42] N. J. Strausfeld,et al. Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .
[43] K. Hausen. The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .
[44] M. H. Quenouille. NOTES ON BIAS IN ESTIMATION , 1956 .
[45] B. Hassenstein,et al. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .