Coding Efficiency of Fly Motion Processing Is Set by Firing Rate, Not Firing Precision

To comprehend the principles underlying sensory information processing, it is important to understand how the nervous system deals with various sources of perturbation. Here, we analyze how the representation of motion information in the fly's nervous system changes with temperature and luminance. Although these two environmental variables have a considerable impact on the fly's nervous system, they do not impede the fly to behave suitably over a wide range of conditions. We recorded responses from a motion-sensitive neuron, the H1-cell, to a time-varying stimulus at many different combinations of temperature and luminance. We found that the mean firing rate, but not firing precision, changes with temperature, while both were affected by mean luminance. Because we also found that information rate and coding efficiency are mainly set by the mean firing rate, our results suggest that, in the face of environmental perturbations, the coding efficiency is improved by an increase in the mean firing rate, rather than by an increased firing precision.

[1]  J. Gibbons,et al.  Nonparametric Statistical Inference , 2020, International Encyclopedia of Statistical Science.

[2]  A. Borst,et al.  Robust Coding of Ego-Motion in Descending Neurons of the Fly , 2009, The Journal of Neuroscience.

[3]  A. Borst,et al.  Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.

[4]  Alexander Borst,et al.  Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.

[5]  Cyrus P Billimoria,et al.  Information rate and spike-timing precision of proprioceptive afferents. , 2007, Journal of neurophysiology.

[6]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[7]  A. Borst,et al.  Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.

[8]  P. Sterling,et al.  How Much the Eye Tells the Brain , 2006, Current Biology.

[9]  Inés Samengo,et al.  Spike-timing precision underlies the coding efficiency of auditory receptor neurons. , 2006, Journal of neurophysiology.

[10]  M. D. Ernst,et al.  Nonparametric Statistical Inference, Fourth Edition , 2005 .

[11]  Alexander Borst,et al.  Effects of Mean Firing on Neural Information Rate , 2001, Journal of Computational Neuroscience.

[12]  D. Cherix,et al.  Behavior of Calliphora vicina (Diptera, Calliphoridae) Under Extreme Conditions , 1999, Journal of Insect Behavior.

[13]  Barry J. Richmond,et al.  Unbiased measures of transmitted information and channel capacity from multivariate neuronal data , 1991, Biological Cybernetics.

[14]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[15]  R. Hengstenberg,et al.  Das augenmuskelsystem der stubenfliege musca domestica , 1971, Kybernetik.

[16]  Alexander Borst,et al.  Noise, Not Stimulus Entropy, Determines Neural Information Rate , 2004, Journal of Computational Neuroscience.

[17]  Martin Egelhaaf,et al.  Impact of Photon Noise on the Reliability of a Motion-Sensitive Neuron in the Fly's Visual System , 2003, The Journal of Neuroscience.

[18]  A. Borst,et al.  Input Organization of Multifunctional Motion-Sensitive Neurons in the Blowfly , 2003, The Journal of Neuroscience.

[19]  A. Borst,et al.  Adaptation of response transients in fly motion vision. II: Model studies , 2003, Vision Research.

[20]  A. Borst,et al.  Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.

[21]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[22]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[23]  M. Egelhaaf,et al.  Outdoor performance of a motion-sensitive neuron in the blowfly , 2001, Vision Research.

[24]  A Borst,et al.  Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.

[25]  Lorenz Bartosch GENERATION OF COLORED NOISE , 2001 .

[26]  G D Lewen,et al.  Neural coding of naturalistic motion stimuli , 2001, Network.

[27]  Dimitris G. Manolakis,et al.  Statistical and Adaptive Signal Processing , 2000 .

[28]  S. Laughlin,et al.  Temperature and the temporal resolving power of fly photoreceptors , 2000, Journal of Comparative Physiology A.

[29]  Warzecha,et al.  Temperature-dependence of neuronal performance in the motion pathway of the blowfly calliphora erythrocephala , 1999, The Journal of experimental biology.

[30]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[31]  Boualem Boashash,et al.  The bootstrap and its application in signal processing , 1998, IEEE Signal Process. Mag..

[32]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[33]  Bowler,et al.  The development of thermotolerance protects blowfly flight muscle mitochondrial function from heat damage , 1995, The Journal of experimental biology.

[34]  D. Stavenga,et al.  A THREE-COMPARTMENT MODEL DESCRIBING TEMPERATURE CHANGES IN TETHERED FLYING BLOWFLIES , 1993 .

[35]  Bernd Heinrich,et al.  The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation , 1993 .

[36]  T. Casey Biophysical Ecology and Heat Exchange in Insects , 1992 .

[37]  Roland Hengstenberg,et al.  Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process , 1991 .

[38]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.

[39]  D. Stavenga,et al.  Temperature Dependence of Receptor Potential and Noise in Fly (Calliphora erythrocephala) Photoreceptor Cells , 1990 .

[40]  S B Laughlin,et al.  Synaptic limitations to contrast coding in the retina of the blowfly Calliphora , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[42]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[43]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[44]  M. H. Quenouille NOTES ON BIAS IN ESTIMATION , 1956 .

[45]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .