Enumerating minimal connected dominating sets in graphs of bounded chordality

Enumerating objects of specified type is one of the principal tasks in algorithmics. In graph algorithms one often enumerates vertex subsets satisfying a certain property. We study the enumeration of all minimal connected dominating sets of an input graph from various graph classes of bounded chordality. We establish enumeration algorithms as well as lower and upper bounds for the maximum number of minimal connected dominating sets in such graphs. In particular, we present algorithms to enumerate all minimal connected dominating sets of chordal graphs in time O ( 1.7159 n ) , of split graphs in time O ( 1.3803 n ) , and of AT-free, strongly chordal, and distance-hereditary graphs in time O * ( 3 n / 3 ) , where n is the number of vertices of the input graph. Our algorithms imply corresponding upper bounds for the number of minimal connected dominating sets for these graph classes.

[1]  Petr A. Golovach,et al.  Enumeration and Maximum Number of Minimal Connected Vertex Covers in Graphs , 2018, Eur. J. Comb..

[2]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[3]  Stephan Olariu,et al.  Domination and Steiner Tree Problems on Graphs with Few P4S , 1998, WG.

[4]  Amer E. Mouawad,et al.  An exact algorithm for connected red-blue dominating set , 2011, J. Discrete Algorithms.

[5]  Pim van 't Hof,et al.  Maximum Number of Minimal Feedback Vertex Sets in Chordal Graphs and Cographs , 2012, COCOON.

[6]  Pim van 't Hof,et al.  Minimal dominating sets in graph classes: Combinatorial bounds and enumeration , 2013, Theor. Comput. Sci..

[7]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[8]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[9]  Richard P. Anstee,et al.  Characterizations of Totally Balanced Matrices , 1984, J. Algorithms.

[10]  Henning Fernau,et al.  An exact algorithm for the Maximum Leaf Spanning Tree problem , 2009, Theor. Comput. Sci..

[11]  Marina Moscarini,et al.  Distance-Hereditary Graphs, Steiner Trees, and Connected Domination , 1988, SIAM J. Comput..

[12]  Jan Arne Telle,et al.  Connecting Terminals and 2-Disjoint Connected Subgraphs , 2013, WG.

[13]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[14]  Lhouari Nourine,et al.  On the Enumeration of Minimal Dominating Sets and Related Notions , 2014, SIAM J. Discret. Math..

[15]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[16]  Matthias Mnich,et al.  Feedback Vertex Sets in Tournaments , 2009, J. Graph Theory.

[17]  Fedor V. Fomin,et al.  On the Minimum Feedback Vertex Set Problem: Exact and Enumeration Algorithms , 2008, Algorithmica.

[18]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..

[19]  J. Moon,et al.  On cliques in graphs , 1965 .

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  Fedor V. Fomin,et al.  Exact Algorithms for Graph Homomorphisms , 2005, Theory of Computing Systems.

[22]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2010, CACM.

[23]  Jesper Makholm Byskov Enumerating maximal independent sets with applications to graph colouring , 2004, Oper. Res. Lett..

[24]  Fedor V. Fomin,et al.  Large Induced Subgraphs via Triangulations and CMSO , 2013, SIAM J. Comput..

[25]  Pinar Heggernes,et al.  Minimal triangulations of graphs: A survey , 2006, Discret. Math..

[26]  Jean-François Couturier,et al.  On the number of minimal dominating sets on some graph classes , 2015, Theor. Comput. Sci..

[27]  Serge Gaspers,et al.  On the number of minimal separators in graphs , 2018, J. Graph Theory.

[28]  Fedor V. Fomin,et al.  Enumerating Minimal Subset Feedback Vertex Sets , 2011, Algorithmica.

[29]  Fabrizio Grandoni,et al.  Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications , 2008, TALG.

[30]  Martin Farber,et al.  Characterizations of strongly chordal graphs , 1983, Discret. Math..

[31]  Petr A. Golovach,et al.  Subset feedback vertex sets in chordal graphs , 2014, J. Discrete Algorithms.