Nonparametric density estimation for classes of positive random variables

A kernel-based density estimator for positive random variables is proposed and analyzed. In particular, a nonparametric estimator is developed which takes advantage of the fact that positive random variables can be represented as the norms of random vectors. By appropriately choosing the dimension of the assumed vector space, the estimator can be structured to exploit a priori knowledge about the density to be estimated. The asymptotic properties (e.g., pointwise and L/sub 1/-consistency) of this density estimator are investigated and found to be similar to the desirable features of the standard kernel estimator. An upper bound on the expected value of the L/sub 1/ error is also derived which provides insight into the behavior of the estimator. Upon using this upper bound, the optimal form for the estimator (i.e., the kernel function, the smoothing factor, etc.) is selected via a minimax strategy. In addition, this upper bound is used to compare the asymptotic performance of the proposed estimator to that of the standard kernel estimator and to boundary-corrected kernel estimators. Numerical examples illustrate that the proposed scheme outperforms the standard and boundary-corrected estimators for a variety of density types. >

[1]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[2]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[3]  L. Devroye A Course in Density Estimation , 1987 .

[4]  Eugene F. Schuster,et al.  Incorporating support constraints into nonparametric estimators of densities , 1985 .

[5]  Daren B. H. Cline,et al.  Kernel Estimation of Densities with Discontinuities or Discontinuous Derivatives , 1991 .

[6]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[7]  H. Müller,et al.  Kernels for Nonparametric Curve Estimation , 1985 .

[8]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[9]  George A. Wright,et al.  Nonparametric density estimation and detection in impulsive interference channels. I. Estimators , 1994, IEEE Trans. Commun..

[10]  R. John,et al.  Boundary modification for kernel regression , 1984 .

[11]  Serena M. Zabin,et al.  Nonparametric Density Estimation and Detection Part I: Estimators ulsive Interference annels - , 1994 .

[12]  Peter Hall,et al.  A Geometrical Method for Removing Edge Effects from Kernel-Type Nonparametric Regression Estimators , 1991 .

[13]  Keinosuke Fukunaga,et al.  Bayes Error Estimation Using Parzen and k-NN Procedures , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  L. Devroye The Equivalence of Weak, Strong and Complete Convergence in $L_1$ for Kernel Density Estimates , 1983 .

[15]  Matt P. Wand,et al.  Minimizing L 1 distance in nonparametric density estimation , 1988 .

[16]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[17]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[18]  David J. Hand,et al.  Kernel Discriminant Analysis , 1983 .

[19]  Wlodzimierz Greblicki,et al.  Asymptotically optimal pattern recognition procedures with density estimates (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[20]  L. Devroye On arbitrarily slow rates of global convergence in density estimation , 1983 .

[21]  R. Tapia,et al.  Nonparametric Probability Density Estimation , 1978 .

[22]  D. W. Scott,et al.  Nonparametric Estimation of Probability Densities and Regression Curves , 1988 .

[23]  Adam Krzyzak,et al.  On exponential bounds on the Bayes risk of the kernel classification rule , 1991, IEEE Trans. Inf. Theory.