Finite element network approximation of conductivity in particle composites

A new finite element method computes conductivity in some unstructured particle-reinforced composite material. The 2-phase material under consideration is composed of a poorly conducting matrix material filled by highly conducting circular inclusions which are randomly dispersed. The mathematical model is a Poisson-type problem with discontinuous coefficients. The discontinuities are huge in contrast and quantity. The proposed method generalizes classical continuous piecewise affine finite elements to special computational meshes which encode the particles in a network structure. Important geometric parameters such as the volume fraction are preserved exactly. The computational complexity of the method is (almost) proportional to the number of inclusions. This is minimal in the sense that the representation of the underlying geometry via the positions and radii of the inclusions is of the same complexity. The discretization error is proportional to the distance of neighboring inclusions and independent of the conductivity contrast in the medium.

[1]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[2]  Marina L. Gavrilova,et al.  Swap conditions for dynamic Voronoi diagrams for circles and line segments , 1999, Comput. Aided Geom. Des..

[3]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[4]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[5]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[6]  Mario Bebendorf,et al.  Why Finite Element Discretizations Can Be Factored by Triangular Hierarchical Matrices , 2007, SIAM J. Numer. Anal..

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[9]  Daniel Peterseim,et al.  Robustness of finite element simulations in densely packed random particle composites , 2012, Networks Heterog. Media.

[10]  Alexander Kolpakov,et al.  Capacity and Transport in Contrast Composite Structures: Asymptotic Analysis and Applications , 2009 .

[11]  Deok-Soo Kim,et al.  Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology , 2001, Computer Aided Geometric Design.

[12]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[13]  Alexei Novikov,et al.  Error of the Network Approximation for Densely Packed Composites with Irregular Geometry , 2002, SIAM J. Math. Anal..

[14]  Daniel Peterseim,et al.  Generalized Delaunay Partitions and Composite Material Modeling , 2010 .

[15]  Daniel Peterseim,et al.  Triangulating a System of Disks , 2010 .

[16]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[17]  Steffen Börm Approximation of solution operators of elliptic partial differential equations by H- and H2-matrices , 2007 .

[18]  Liliana Borcea,et al.  Network Approximation for Transport Properties of High Contrast Materials , 1998, SIAM J. Appl. Math..

[19]  Leonid Berlyand,et al.  Network Approximation in the Limit of¶Small Interparticle Distance of the¶Effective Properties of a High-Contrast¶Random Dispersed Composite , 2001 .

[20]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[21]  Deok-Soo Kim,et al.  Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry , 2001, Comput. Aided Geom. Des..

[22]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[23]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[24]  Serge Nicaise,et al.  On the Interpolation Error Estimates for Q1 Quadrilateral Finite Elements , 2008, SIAM J. Numer. Anal..

[25]  M. Larson,et al.  Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .

[26]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  Steffen Börm,et al.  Approximation of solution operators of elliptic partial differential equations by $${\mathcal{H}}$$- and $${\mathcal{H}^2}$$-matrices , 2010, Numerische Mathematik.

[29]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[30]  Timothy A. Davis,et al.  Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .