Selective CO2 adsorption in a metal-organic framework constructed from an organic ligand with flexible joints.

A metal-organic framework (SNU-110) constructed from an organic ligand with flexible joints exhibits selective CO(2) adsorption over N(2), O(2), H(2) and CH(4) gases.

[1]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[2]  Jinhee Park,et al.  Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. , 2012, Journal of the American Chemical Society.

[3]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[4]  M. P. Suh,et al.  Selective CO2 adsorption in a flexible non-interpenetrated metal-organic framework. , 2011, Chemical communications.

[5]  M. P. Suh,et al.  High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. , 2010, Chemistry.

[6]  Myunghyun Paik Suh,et al.  Highly selective CO(2) capture in flexible 3D coordination polymer networks. , 2009, Angewandte Chemie.

[7]  S. Kitagawa,et al.  A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. , 2009, Journal of the American Chemical Society.

[8]  Hyunuk Kim,et al.  Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. , 2005, Chemistry.

[9]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[10]  M. P. Suh,et al.  Stepwise and hysteretic sorption of N(2), O(2), CO(2), and H(2) gases in a porous metal-organic framework [Zn(2)(BPnDC)(2)(bpy)]. , 2010, Chemical communications.

[11]  Linhua Xie,et al.  Flexible metal-organic framework with hydrophobic pores. , 2011, Chemistry.

[12]  Andreas Schneemann,et al.  Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. , 2012, Journal of the American Chemical Society.

[13]  H. R. Moon,et al.  A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. , 2006, Journal of the American Chemical Society.

[14]  Kyriakos C. Stylianou,et al.  An Adaptable Peptide-Based Porous Material , 2010, Science.

[15]  Nathaniel L Rosi,et al.  Tuning MOF CO2 adsorption properties via cation exchange. , 2010, Journal of the American Chemical Society.

[16]  Ji Hyun Kim,et al.  Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature. , 2005, Angewandte Chemie.

[17]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[18]  M. P. Suh,et al.  Enhanced isosteric heat of H2 adsorption by inclusion of crown ethers in a porous metal-organic framework. , 2012, Chemical communications.

[19]  Susumu Kitagawa,et al.  A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6 gas separation: equilibrium and kinetic studies , 2012 .

[20]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[21]  R. Fischer,et al.  Gated channels in a honeycomb-like zinc-dicarboxylate-bipyridine framework with flexible alkyl ether side chains. , 2011, Journal of the American Chemical Society.

[22]  M. P. Suh,et al.  A highly porous metal-organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. , 2011, Chemistry.

[23]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[24]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[25]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[26]  Daniel Louër,et al.  Powder pattern indexing with the dichotomy method , 2004 .

[27]  Young Eun Cheon,et al.  Post-synthetic reversible incorporation of organic linkers into porous metal-organic frameworks through single-crystal-to-single-crystal transformations and modification of gas-sorption properties. , 2010, Chemistry.

[28]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[29]  Young Eun Cheon,et al.  Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. , 2009, Angewandte Chemie.

[30]  T. Emge,et al.  A flexible MMOF exhibiting high selectivity for CO(2) over N(2), CH(4) and other small gases. , 2010, Chemical communications.