Interaction dynamics of spatially separated cavitation bubbles in water.

We present a high-speed photographic analysis of the interaction of cavitation bubbles generated in two spatially separated regions by femtosecond laser-induced optical breakdown in water. Depending on the relative energies of the femtosecond laser pulses and their spatial separation, different kinds of interactions, such as a flattening and deformation of the bubbles, asymmetric water flows, and jet formation were observed. The results presented have a strong impact on understanding and optimizing the cutting effect of modern femtosecond lasers with high repetition rates (>1 MHz).

[1]  W Lauterborn,et al.  KAVITATION DURCH LASERLICHT. , 1974 .

[2]  W. Hentschel,et al.  Cavitation bubble dynamics studied by high speed photography and holography: part one , 1985 .

[3]  A. Shima,et al.  Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse , 1986, Journal of Fluid Mechanics.

[4]  John R. Blake,et al.  Cavitation Bubbles Near Boundaries , 1987 .

[5]  Dynamic behavior of two‐laser‐induced bubbles in water , 1990 .

[6]  D. Dufresne,et al.  Collective effects of cavitation: Experimental study of bubble‐bubble and bubble‐shock wave interactions , 1990 .

[7]  C. Sacchi Laser-induced electric breakdown in water , 1991 .

[8]  John R. Blake,et al.  Interaction of two cavitation bubbles with a rigid boundary , 1993, Journal of Fluid Mechanics.

[9]  A. Vogel,et al.  Interaction of two laser-induced cavitation bubbles , 1994 .

[10]  A. Shima,et al.  Studies on bubble dynamics , 1997 .

[11]  D. Hammer,et al.  Laser-induced breakdown in aqueous media , 1997 .

[12]  D Theisen,et al.  Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption , 1998, Photonics West - Biomedical Optics.

[13]  Claus-Dieter Ohl,et al.  The Peculiar Dynamics of Cavitation Bubbles , 1998 .

[14]  A. Vogel,et al.  Influence of pulse duration on mechanical effects after laser-induced breakdown in water , 1998 .

[15]  Gary D. Noojin,et al.  Laser-induced breakdown in the eye at pulse durations from 80 ns to 100 fs , 1998, Photonics West - Biomedical Optics.

[16]  G. Mourou,et al.  Corneal refractive surgery with femtosecond lasers , 1999 .

[17]  A. Vogel,et al.  Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density , 1999 .

[18]  John R. Blake,et al.  Acoustic cavitation: the fluid dynamics of non–spherical bubbles , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Aspherical bubble collapse–comparison with simulations , 2000 .

[20]  M. Tsubota,et al.  Behavior of laser-induced cavitation bubbles in liquid nitrogen , 2000 .

[21]  H. Welling,et al.  Application of ultrashort laser pulses for intrastromal refractive surgery , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[22]  Tetsuya Kodama,et al.  Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics , 2000 .

[23]  Alfred Vogel Optical Breakdown in Water and Ocular Media, and Its Use for Intraocular Photodisruption , 2001 .

[24]  Olgert Lindau,et al.  Collapse and rebound of a laser-induced cavitation bubble , 2001 .

[25]  G. S. Keen,et al.  The final stage of the collapse of a cavitation bubble close to a rigid boundary , 2002, Physics of Fluids.

[26]  Alexander Heisterkamp,et al.  Einsatz ultrakurzer Laserpulse in der refraktiven Laserchirugie , 2002 .

[27]  Evert Klaseboer,et al.  The merging of two gaseous bubbles with an application to underwater explosions , 2003 .

[28]  R. Krueger,et al.  First clinical results with the femtosecond neodynium-glass laser in refractive surgery. , 2003, Journal of refractive surgery.

[29]  C. Ohl,et al.  Shock-wave-induced jetting of micron-size bubbles. , 2003, Physical review letters.

[30]  Yukio Tomita,et al.  Interaction of laser-induced cavitation bubbles with composite surfaces , 2003 .

[31]  Boo Cheong Khoo,et al.  An indirect boundary element method for three-dimensional explosion bubbles , 2004 .

[32]  Reinhard Geisler Untersuchungen zur laserinduzierten Kavitation mit Nanosekunden- und Femtosekundenlasern , 2004 .

[33]  S. Otto,et al.  Jets in bubbles , 2004 .

[34]  H. Lubatschowski,et al.  Interaction with Biological Tissue , 2004 .

[35]  Guy M Kezirian,et al.  Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis , 2004, Journal of cataract and refractive surgery.

[36]  Holger Lubatschowski,et al.  fs-Laser induced elasticity changes to improve presbyopic lens accommodation , 2005, SPIE BiOS.

[37]  Evert Klaseboer,et al.  Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure , 2005, Journal of Fluid Mechanics.

[38]  Perry S. Binder,et al.  One thousand consecutive IntraLase laser in situ keratomileusis flaps , 2006, Journal of cataract and refractive surgery.

[39]  T. Ripken Anwendung von MHz-fs-Lasern in der Ophthalmologie und Erarbeitung eines Therapiekonzeptes für die laserassistierte Behandlung der Alterssichtigkeit , 2007 .

[40]  Olivier Albert,et al.  In situ monitoring of second-harmonic generation in human corneas to compensate for femtosecond laser pulse attenuation in keratoplasty. , 2007, Journal of biomedical optics.

[41]  H Lubatschowski,et al.  Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells. , 2007, Optics express.

[42]  Holger Lubatschowski,et al.  fs-Laser induced elasticity changes to improve presbyopic lens accommodation , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[43]  O. Kermani,et al.  Comparative micromorphologic in vitro porcine study of IntraLase and Femto LDV femtosecond lasers , 2008, Journal of cataract and refractive surgery.

[44]  A. Vogel,et al.  Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. , 2008, Physical review letters.

[45]  Holger Lubatschowski,et al.  Overview of commercially available femtosecond lasers in refractive surgery. , 2008, Journal of refractive surgery.

[46]  M. Knorz Multifocal intraocular lenses: overview of their capabilities, limitations, and clinical benefits. , 2008, Journal of refractive surgery.

[47]  Urs Vossmerbaeumer,et al.  Comparison of flap adhesion strength using the Amadeus microkeratome and the IntraLase iFS femtosecond laser in rabbits. , 2008, Journal of refractive surgery.

[48]  S. Schumacher Entwicklung einer Ultrakurzpuls-Laserapplikationseinheit zur Behandlung der Altersweitsichtigkeit , 2009 .

[49]  Shengcai Li,et al.  Interaction of two laser induced cavitation bubbles , 2009 .

[50]  Zoltan Nagy,et al.  Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. , 2009, Journal of refractive surgery.

[51]  Claus-Dieter Ohl,et al.  Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry , 2009, Journal of Fluid Mechanics.