Microfabricated Optically-Pumped Magnetometers for Biomagnetic Applications

We report on the progress in developing microfabricated optically-pumped magnetometer arrays for imaging applications. We have improved our sensitivities by several orders of magnitude in the last ten years. Now, our zero-field magnetometers reach noise values below 15 fT/Hz1/2. Recently, we have also developed gradiometers to reject ambient magnetic field noise. We have built several imaging arrays and validated them for biomedical measurements of brain and heart activity.

[1]  S. Haroche,et al.  Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances , 1969 .

[2]  L. Trahms,et al.  Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers , 2015, Physics in medicine and biology.

[3]  J. Kitching,et al.  Atomic Sensors – A Review , 2011, IEEE Sensors Journal.

[4]  J. Kitching,et al.  A low-power, high-sensitivity micromachined optical magnetometer , 2012 .

[5]  C. cohen-tannoudji,et al.  Experimental Study of Zeeman Light Shifts in Weak Magnetic Fields , 1972 .

[6]  M. Romalis,et al.  Subfemtotesla scalar atomic magnetometry using multipass cells. , 2012, Physical review letters.

[7]  S. K. Lee,et al.  Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry , 2007, 0709.2543.

[8]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[9]  D Budker,et al.  Zero-field remote detection of NMR with a microfabricated atomic magnetometer , 2008, Proceedings of the National Academy of Sciences.

[10]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[11]  Volkmar Schultze,et al.  Light-narrowed optically pumped M x magnetometer with a miniaturized Cs cell , 2011 .

[12]  Svenja Knappe,et al.  Femtotesla atomic magnetometry in a microfabricated vapor cell. , 2010, Optics express.

[13]  Lutz Trahms,et al.  Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications , 2010 .

[14]  V. Shah,et al.  Spin-exchange relaxation-free magnetometry using elliptically polarized light , 2009, 0903.2447.

[15]  Svenja Knappe,et al.  Subpicotesla atomic magnetometry with a microfabricated vapour cell , 2007 .

[16]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[17]  M. Weisend,et al.  Magnetoencephalography with a two color pump-probe fiber-coupled atomic magnetometer. , 2010 .

[18]  W. Happer,et al.  Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors , 1973 .

[19]  Svenja Knappe,et al.  Chip-scale atomic magnetometer , 2004 .

[20]  T. Gustavson,et al.  Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .

[21]  J. Kitching,et al.  A microfabricated atomic clock , 2004 .

[22]  Svenja Knappe,et al.  Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique , 2007 .

[23]  R. Lutwak,et al.  An ultra-low-power physics package for a chip-scale atomic clock , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[24]  J. Kitching,et al.  Microfabricated alkali atom vapor cells , 2004 .

[25]  B. S. Mathur,et al.  Effective Operator Formalism in Optical Pumping , 1967 .

[26]  Steven Chu,et al.  Atom-interferometry tests of the isotropy of post-Newtonian gravity. , 2007, Physical review letters.

[27]  T. W. Kornack,et al.  A low-noise ferrite magnetic shield , 2007 .

[28]  A. Bloom Principles of operation of the rubidium vapor magnetometer , 1962 .