Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates

The scientific and technical challenges involved in building the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) are discussed. The practical, laboratory scale approach explored today to assemble a multi-access atomic scale precision interconnection machine is presented. Depending on the surface electronic properties of the targeted substrates, two types of machines are considered: on moderate surface band gap materials, scanning tunneling microscopy can be combined with scanning electron microscopy to provide an efficient navigation system, while on wide surface band gap materials, atomic force microscopy can be used in conjunction with optical microscopy. The size of the planar part of the circuit should be minimized on moderate band gap surfaces to avoid current leakage, while this requirement does not apply to wide band gap surfaces. These constraints impose different methods of connection, which are thoroughly discussed, in particular regarding the recent progress in single atom and molecule manipulations on a surface.

[1]  Liviu Nicu,et al.  A metallic microcantilever electric contact probe array incorporated in an atomic force microscope , 2000 .

[2]  Contrast formation in atomic resolution scanning force microscopy on CaF2(111): experiment and theory , 2001 .

[3]  N. Rompotis,et al.  Dihydride dimer structures on the Si(100):H surface studied by low-temperature scanning tunneling microscopy , 2008 .

[4]  C. Joachim,et al.  Design and synthesis of mono-molecular machines , 2006 .

[5]  E. Bauer Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I , 1958 .

[6]  C. Joachim,et al.  A Morse manipulator molecule for the modulation of metallic shockley surface states , 2007 .

[7]  M. Reichling,et al.  Lateral manipulation of atomic size defects on the CaF2(111) surface , 2006, Nanotechnology.

[8]  C. D. Lee,et al.  Recent developments in surface studies of GaN and AlN , 2005 .

[9]  Sumio Hosaka,et al.  Surface modification of MoS2 using an STM , 1992 .

[10]  Jason Pitters,et al.  Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen. , 2006, The Journal of chemical physics.

[11]  J. Brugger,et al.  Nanostenciling for fabrication and interconnection of nanopatterns and microelectrodes , 2007 .

[12]  N. Chandrasekhar,et al.  Nanotip apex modification with atomic precision and single atom tips restoration , 2009 .

[13]  Peter H. Bartels,et al.  Field ion microscopy;: Principles and applications, , 1969 .

[14]  C. Joachim,et al.  Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length , 2009, Science.

[15]  Tutorial: Bonding more atoms together for a single molecule computer , 2002 .

[16]  M. Sushko,et al.  Modelling of non-contact atomic force microscopy imaging of individual molecules on oxide surfaces , 2006 .

[17]  C. Joachim,et al.  An intramolecular digital 1/2-adder with tunneling current drive and read-outs , 2008 .

[18]  Observation of Individual Molecules Trapped on a Nanostructured Insulator , 2004, physics/0511187.

[19]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[20]  Mark A Ratner,et al.  Molecular electronics: some views on transport junctions and beyond. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[22]  Seizo Morita,et al.  Mechanical vertical manipulation of selected single atoms by soft nanoindentation using near contact atomic force microscopy. , 2003, Physical review letters.

[23]  C. Joachim,et al.  A local view on hyperconjugation , 2007 .

[24]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[25]  C. Gerber,et al.  Dynamic SFM with true atomic resolution on alkali halide surfaces , 1998 .

[26]  C. Joachim,et al.  Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor. , 2009, Nano letters.

[27]  A. Shluger,et al.  Multiscale model of the manipulation of single atoms on insulating surfaces using an atomic force microscope tip , 2007 .

[28]  C. Joachim,et al.  Trapping and moving metal atoms with a six-leg molecule , 2005, Nature materials.

[29]  C. Joachim,et al.  Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface , 2008 .

[30]  M. Reichling,et al.  Imaging the atomic arrangements on the high-temperature reconstructed α-Al2O3(0001) surface , 2001, Nature.

[31]  W. C. Walker,et al.  Electronic spectrum and ultraviolet optical properties of crystalline MgO. , 1967 .

[32]  K. Heinz,et al.  Functional surface reconstructions of hexagonal SiC , 2004 .

[33]  Gary W. Rubloff,et al.  Far-Ultraviolet Reflectance Spectra and the Electronic Structure of Ionic Crystals , 1972 .

[34]  J. Brugger,et al.  Reusability of nanostencils for the patterning of Aluminum nanostructures by selective wet etching , 2008 .

[35]  J. Gimzewski,et al.  Parallel nanodevice fabrication using a combination of shadow mask and scanning probe methods , 1999 .

[36]  S. Mannsfeld,et al.  Growth‐Mode‐Induced Narrowing of Optical Spectra of an Organic Adlayer , 2008 .

[37]  John R. Tucker,et al.  Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[38]  F. Besenbacher,et al.  Hydrogen-bonded molecular networks of melamine and cyanuric acid on thin films of NaCl on Au(111). , 2009, Small.

[39]  E. Dujardin,et al.  Development of UHV dynamic nanostencil for surface patterning. , 2008, The Review of scientific instruments.

[40]  C. Joachim,et al.  Conductance of a finite missing hydrogen atomic line on Si(001)-(2×1)- H , 1999 .

[41]  T. Kunstmann,et al.  Organic molecular nanowires: N,N′-dimethylperylene-3,4,9,10-bis(dicarboximide) on KBr(001) , 2007 .

[42]  Stephen Mann,et al.  One‐Dimensional Plasmon Coupling by Facile Self‐Assembly of Gold Nanoparticles into Branched Chain Networks , 2005 .

[43]  M. Mehl,et al.  Calculation of electronic, structural, and vibrational properties in alkali halides using a density-functional method with localized densities , 2000 .

[44]  C. Joachim,et al.  Organic Molecules Acting as Templates on Metal Surfaces , 2002, Science.

[45]  F. Diederich,et al.  Force microscopy on insulators: imaging of organic molecules , 2005 .

[46]  Larry A. Nagahara,et al.  A Bond-Fluctuation Mechanism for Stochastic Switching in Wired Molecules , 2003, Science.

[47]  Franz J. Giessibl,et al.  Noncontact Atomic Force Microscopy: Volume 3 , 2009 .

[48]  Gérald Dujardin,et al.  Atomic wire fabrication by STM induced hydrogen desorption , 2003 .

[49]  S. Jarvis,et al.  Direct imaging of lipid-ion network formation under physiological conditions by frequency modulation atomic force microscopy. , 2007, Physical review letters.

[50]  P. Zahl,et al.  All-in-one static and dynamic nanostencil atomic force microscopy/scanning tunneling microscopy system , 2005 .

[51]  R. Bennewitz Structured surfaces of wide band gap insulators as templates for overgrowth of adsorbates , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  O. Ambacher,et al.  Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications , 2007 .

[53]  Masayuki Abe,et al.  Atom inlays performed at room temperature using atomic force microscopy , 2005, Nature materials.

[54]  Y. Wada Atom electronics: a proposal of nano-scale devices based on atom/molecule switching , 1996 .

[55]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[56]  The contact conductance on a molecular wire , 2005 .

[57]  C. Joachim,et al.  Surface reconstruction of MoS2 to Mo2S3 , 2008 .

[58]  Phaedon Avouris,et al.  Atomic and nanometer-scale modification of materials : fundamentals and applications , 1993 .

[59]  A. Madouri,et al.  New SiC microcantilever electric connection array for single molecule electrical investigation , 2009 .

[60]  A. Gourdon,et al.  Synthesis of Two Complementary Molecular Moulds , 2009 .

[61]  J. Brault,et al.  Layer-by-layer epitaxial growth of Mg on GaN(0001) , 2008 .

[62]  C. Henry,et al.  Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. , 2003, Physical review letters.

[63]  A. Fisher,et al.  Adsorption of benzene on Si(100)-(2×1): Adsorption energies and STM image analysis by ab initio methods , 2001 .

[64]  G. Somorjai,et al.  Parallel fabrication of sub-50-nm uniformly sized nanoparticles by deposition through a patterned silicon nitride nanostencil. , 2005, Nano letters.

[65]  J. Topple,et al.  Strain induced dewetting of a molecular system: bimodal growth of PTCDA on NaCl. , 2008, Physical review letters.

[66]  Jurriaan Huskens,et al.  Shadow-mask evaporation through monolayer-modified nanostencils , 2002 .

[67]  R. French Electronic Band Structure of {Al2O3}, with Comparison to Alon and {AIN} , 1990 .

[68]  C. Joachim,et al.  Fabrication and AFM characterization of gold wires of less than 50 nm width buried in a SiO2 substrate , 1992 .

[69]  Boland Role of hydrogen desorption in the chemical-vapor deposition of Si(100) epitaxial films using disilane. , 1991, Physical review. B, Condensed matter.

[70]  C. Noguera Physics and Chemistry at Oxide Surfaces , 2005 .

[71]  C. Joachim,et al.  FABRICATION OF N-ELECTRODES NANOJUNCTIONS FOR MONOMOLECULAR ELECTRONIC INTERCONNECTS , 2004 .

[72]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[73]  S. Kitamura,et al.  Observation of 7×7 Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy , 1995 .

[74]  C. Noguera Physics and Chemistry at Oxide Surfaces: Contents , 1996 .

[75]  Aryasetiawan,et al.  Bulk and surface electronic structures of MgO. , 1995, Physical review. B, Condensed matter.

[76]  Jie Deng,et al.  Ultrahigh vacuum scanning tunneling microscope manipulation of single gold nanoislands on MoS2 for constructing planar nanointerconnects , 2007 .

[77]  Dae-Joon Kang,et al.  Dynamic shadow mask technique: a universal tool for nanoscience. , 2005, Nano letters.

[78]  Formation of iron silicide nano-islands on Si substrates by metal organic chemical vapor deposition under electron beams , 2006 .

[79]  Jurriaan Huskens,et al.  Self‐Assembled Monolayer Coatings on Nanostencils for the Reduction of Materials Adhesion , 2003 .

[80]  Insulators at the ultrathin limit: electronic structure studied by scanning tunnelling microscopy and scanning tunnelling spectroscopy , 2004 .

[81]  Christian Joachim,et al.  Wetting studies on Au nanowires deposited through nanostencil masks , 2007 .

[82]  C. Joachim,et al.  Confinement of the field electron emission to atomic sites on ultra sharp tips , 2009 .

[83]  C. Joachim,et al.  A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics , 2002 .

[84]  S. Gauthier,et al.  Step-induced tip polarity reversal investigated by dynamic force microscopy on KBr(001) , 2008, Nanotechnology.