Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs.

[1]  J. Baker,et al.  HEB and E2A function as SMAD/FOXH1 cofactors. , 2011, Genes & development.

[2]  M. Trotter,et al.  Pluripotency factors regulate definitive endoderm specification through eomesodermin. , 2011, Genes & development.

[3]  M. Kuehn,et al.  Nodal Signaling Recruits the Histone Demethylase Jmjd3 to Counteract Polycomb-Mediated Repression at Target Genes , 2010, Science Signaling.

[4]  Y-C Lee,et al.  Nodal promotes growth and invasion in human gliomas , 2010, Oncogene.

[5]  M. Brentani,et al.  Smad2 and Smad6 as predictors of overall survival in oral squamous cell carcinoma patients , 2010, Molecular Cancer.

[6]  Francesca Chiaromonte,et al.  Erythroid GATA 1 function revealed by genome-wide analysis of transcription factor occupancy , histone modifications , and mRNA expression , 2009 .

[7]  Henriette O'Geen,et al.  Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. , 2009, Molecular cell.

[8]  Ernest Fraenkel,et al.  Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. , 2009, Molecular cell.

[9]  M. Trotter,et al.  Activin/Nodal signalling maintains pluripotency by controlling Nanog expression , 2009, Development.

[10]  Dustin E. Schones,et al.  Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. , 2009, Cell stem cell.

[11]  Albert C. Huang,et al.  Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. , 2008, Genes & development.

[12]  R. Myers,et al.  An Integrated Software System for Analyzing Chip-chip and Chip-seq Data (supplementary Information) , 2008 .

[13]  Simon Kasif,et al.  Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains , 2008, PLoS genetics.

[14]  Bing Ren,et al.  ChromaSig: A Probabilistic Approach to Finding Common Chromatin Signatures in the Human Genome , 2008, PLoS Comput. Biol..

[15]  S. Batzoglou,et al.  Genome-Wide Analysis of Transcription Factor Binding Sites Based on ChIP-Seq Data , 2008, Nature Methods.

[16]  G. Pan,et al.  NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. , 2008, Cell stem cell.

[17]  Richard A Young,et al.  Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. , 2008, Genes & development.

[18]  Yongmei Liu,et al.  Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. , 2008, Developmental cell.

[19]  M. Rudnicki,et al.  Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex , 2008, Nature Cell Biology.

[20]  G. Pan,et al.  Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. , 2007, Cell stem cell.

[21]  Atif Shahab,et al.  Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. , 2007, Cell stem cell.

[22]  A. Sharov,et al.  Human ES cell profiling broadens the reach of bivalent domains. , 2007, Cell stem cell.

[23]  Huiqing Liu,et al.  Transcriptional profiling of definitive endoderm derived from human embryonic stem cells. , 2007, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[24]  Ruedi Aebersold,et al.  Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. , 2007, Molecular cell.

[25]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[26]  J. Wrana,et al.  Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development , 2007, The EMBO journal.

[27]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[28]  M. Shen Nodal signaling: developmental roles and regulation , 2007, Development.

[29]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[30]  Stephen Dalton,et al.  Activin A Efficiently Specifies Definitive Endoderm from Human Embryonic Stem Cells Only When Phosphatidylinositol 3‐Kinase Signaling Is Suppressed , 2007, Stem cells.

[31]  E. Kroon,et al.  Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells , 2006, Nature Biotechnology.

[32]  Tom Misteli,et al.  Chromatin in pluripotent embryonic stem cells and differentiation , 2006, Nature Reviews Molecular Cell Biology.

[33]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[34]  J. Rossant,et al.  The mouse embryo autonomously acquires anterior-posterior polarity at implantation. , 2006, Developmental cell.

[35]  E. Kroon,et al.  Efficient differentiation of human embryonic stem cells to definitive endoderm , 2005, Nature Biotechnology.

[36]  R. Pedersen,et al.  Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells , 2005, Journal of Cell Science.

[37]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[38]  Ariel J. Levine,et al.  TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells , 2005 .

[39]  Ariel J. Levine,et al.  TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. , 2005, Development.

[40]  B. Tsang,et al.  Nodal induces apoptosis and inhibits proliferation in human epithelial ovarian cancer cells via activin receptor-like kinase 7. , 2004, The Journal of clinical endocrinology and metabolism.

[41]  D. Besser Expression of Nodal, Lefty-A, and Lefty-B in Undifferentiated Human Embryonic Stem Cells Requires Activation of Smad2/3* , 2004, Journal of Biological Chemistry.

[42]  Johnathon R. Walls,et al.  Foxh1 is essential for development of the anterior heart field. , 2004, Developmental cell.

[43]  S. Maheswaran,et al.  Transforming Growth Factor-beta superfamily: evaluation as breast cancer biomarkers and preventive agents. , 2004, Current cancer drug targets.

[44]  A. Schier Nodal signaling in vertebrate development. , 2003, Annual review of cell and developmental biology.

[45]  Y. Saijoh,et al.  Left-right patterning of the mouse lateral plate requires nodal produced in the node. , 2003, Developmental biology.

[46]  Nancy Papalopulu,et al.  Techniques and probes for the study of Xenopus tropicalis development , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[47]  Frank R. Lin,et al.  Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. , 2002, Molecular cell.

[48]  白鳥 秀卓 Two-step regulation of left-right asymmetric expression of Pitx2 : Initiation by Nodal signaling and maintenance by Nkx2 , 2002 .

[49]  L. Attisano,et al.  The transcriptional role of Smads and FAST (FoxH1) in TGFβ and activin signalling , 2001, Molecular and Cellular Endocrinology.

[50]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Wrana,et al.  Smads as transcriptional co-modulators. , 2000, Current opinion in cell biology.

[52]  K. Zaret,et al.  An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. , 1999, Molecular cell.

[53]  H. Steinbeisser,et al.  Negative Autoregulation of the Organizer-specific Homeobox Gene goosecoid * , 1998, The Journal of Biological Chemistry.