A Spectral Vanishing Viscosity Method for Large-Eddy Simulations

A new simulation approach for high Reynolds number turbulent flows is developed, combining concepts of monotonicity in nonlinear conservation laws with concepts of large-eddy simulation. The spectral vanishing viscosity (SVV), first introduced by E. Tadmor SIAM J. Numer. Anal.26, 30 (1989), is incorporated into the Navier?Stokes equations for controlling high-wavenumber oscillations. Unlike hyperviscosity kernels, the SVV approach involves a second-order operator which can be readily implemented in standard finite element codes. In the work presented here, discretization is performed using hierarchical spectral/hp methods accommodating effectively an ab initio intrinsic scale separation. The key result is that monotonicity is enforced via SVV leading to stable discretizations without sacrificing the formal accuracy, i.e., exponential convergence, in the proposed discretization. Several examples are presented to demonstrate the effectiveness of the new approach including a comparison with eddy-viscosity spectral LES of turbulent channel flow. In its current implementation the SVV approach for controlling the small scales is decoupled from the large scales, but a procedure is proposed that will provide coupling similar to the classical LES formulation.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  Paul R. Woodward,et al.  Kolmogorov‐like spectra in decaying three‐dimensional supersonic flows , 1994 .

[3]  J. Ferziger,et al.  Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .

[4]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[5]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[6]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[7]  R. Temam,et al.  Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method , 1993 .

[8]  Helmut Eckelmann,et al.  Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow , 1979 .

[9]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..

[10]  E. Tadmor Total-variation and error estimates for spectral viscosity approximations , 1993 .

[11]  R. Panton A Reynolds Stress Function for Wall Layers , 1997 .

[12]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[13]  Gui-Qiang G. Chen,et al.  Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .

[14]  Jean-Luc Guermond,et al.  Subgrid stabilization of Galerkin approximations of monotone operators , 1999 .

[15]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[16]  Roger Temam,et al.  Approximation of attractors, large eddy simulations and multiscale methods , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[17]  K. Horiuti A new dynamic two-parameter mixed model for large-eddy simulation , 1997 .

[18]  S.M.Ould Kaber,et al.  A Legendre Pseudospectral Viscosity Method , 1996 .

[19]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[20]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[21]  C. Meneveau Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests , 1994 .

[22]  Carl Erik Wasberg,et al.  The Spectral Viscosity Method Applied to Simulation of Waves in a Stratified Atmosphere , 1992 .

[23]  Eitan Tadmor,et al.  Super Viscosity And Spectral Approximations Of Nonlinear Conservation Laws , 1993 .

[24]  M. Wille Large eddy simulation of jets in cross flows , 1997 .

[25]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[26]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[27]  N. SIAMJ.,et al.  CHEBYSHEV – LEGENDRE SPECTRAL VISCOSITY METHOD FOR NONLINEAR CONSERVATION LAWS , 1998 .

[28]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[29]  Steven A. Orszag,et al.  Local energy flux and subgrid-scale statistics in three-dimensional turbulence , 1998, Journal of Fluid Mechanics.

[30]  Anne Gelb,et al.  Detection of Edges in Spectral Data , 1999 .

[31]  Maria Vittoria Salvetti,et al.  A Priori Tests of a New Dynamic Subgrid-Scale Model for Finite-Difference Large-Eddy Simulations , 1995 .

[32]  Wai Sun Don Numerical study of pseudospectral methods in shock wave applications , 1994 .

[33]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[34]  Laurent Emmel Méthode spectrale multidomaine de viscosité évanescente pour des problèmes hyperboliques non linéaires , 1998 .

[35]  U. K. Andj Large Eddy Simulation Using Unstructured Spectral/hp Elements , 1999 .

[36]  C. Tam,et al.  A Study of the Short Wave Components in Computational Acoustics , 1993 .

[37]  R. LeVeque Numerical methods for conservation laws , 1990 .

[38]  George Em Karniadakis,et al.  A spectral element-FCT method for the compressible Euler equations , 1994 .

[39]  G. Karniadakis,et al.  Vorticity transport in modeling three‐dimensional unsteady shear flows , 1995 .

[40]  F. Grinstein,et al.  Monotonically integrated large eddy simulation of free shear flows , 1999 .

[41]  Heping Ma,et al.  Chebyshev--Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws , 1998 .

[42]  Doyle Knight,et al.  Recent Advances in DNS and LES , 1999 .

[43]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[44]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[45]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[46]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.