Thin-film silicon-based quadruple junction solar cells approaching 20% conversion efficiency

Abstract Thin-film silicon-based solar cells are a well-established photovoltaic (PV) technology. The best reported initial and stabilized conversion efficiency is 16.3% and 13.4%, respectively. Thin-film silicon PV technology needs to achieve initial conversion efficiency approaching 20% in order to stay competitive with other PV technologies. The multi-junction approach is regarded as the main strategy for improving cells efficiency. In this contribution, we study thin-film silicon-based solar cells based on a quadruple junction device and discuss their potential for achieving a high efficiency. We carried out optical modelling of this novel device structure using state-of-the-art materials and light management techniques. We demonstrate a quadruple junction cell with simulated photo-generated current density of 8.7 mA/cm 2 in current-matching condition and potential initial conversion efficiency of 19.6%. A significant spectral overlap is observed between the component cells that makes the design of the current-matched device complex. We can control the spectral overlap by employing band-gap engineering of absorber layers and design an improved current-matched quadruple junction solar cell with potential initial conversion efficiency equal to 19.8%.

[1]  P. Babál,et al.  Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells , 2013 .

[2]  C. Ballif,et al.  Silicon Filaments in Silicon Oxide for Next‐Generation Photovoltaics , 2012, Advanced materials.

[3]  M. Konagai,et al.  Effect of Hydrogen Dilution on the Metastability of Hydrogenated Amorphous Silicon Oxide Solar Cells , 2011 .

[4]  Geoffrey S. Kinsey,et al.  PATHWAYS TO 40%-EFFICIENT CONCENTRATOR PHOTOVOLTAICS , 2005 .

[5]  E. Schiff Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals , 2011 .

[6]  J. Krč,et al.  Optical simulation of the role of reflecting interlayers in tandem micromorph silicon solar cells , 2005 .

[7]  D. L. Staebler,et al.  Optically induced conductivity changes in discharge‐produced hydrogenated amorphous silicon , 1980 .

[8]  Kimihiko Saito,et al.  High‐efficiency thin‐film silicon solar cells with improved light‐soaking stability , 2013 .

[9]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[10]  M. Kondo,et al.  Microcrystalline Silicon Solar Cells with 10.5% Efficiency Realized by Improved Photon Absorption via Periodic Textures and Highly Transparent Conductive Oxide , 2013 .

[11]  Michio Kondo,et al.  Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells , 2009 .

[12]  Christophe Ballif,et al.  UV‐nano‐imprint lithography technique for the replication of back reflectors for n‐i‐p thin film silicon solar cells , 2011 .

[13]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[14]  M. Zeman,et al.  Modeling and optimization of white paint back reflectors for thin-film silicon solar cells , 2010 .

[15]  M. Zeman,et al.  A scattering model for nano-textured interfaces and its application in opto-electrical simulations of thin-film silicon solar cells , 2012 .

[16]  M. Kondo,et al.  Influence of alloy composition on carrier transport and solar cell properties of hydrogenated microcrystalline silicon-germanium thin films , 2006 .

[17]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[18]  M. Zeman,et al.  New Insights in the Nanostructure and Defect States of Hydrogenated Amorphous Silicon Obtained by Annealing , 2013, IEEE Journal of Photovoltaics.

[19]  Rolf Brendel,et al.  Thin-Film Crystalline Silicon Solar Cells: Physics and Technology , 2003 .

[20]  M. Zeman,et al.  Design and application of dielectric distributed Bragg back reflector in thin-film silicon solar cells , 2012 .

[21]  C. Li,et al.  Hydrogenated microcrystalline silicon germanium as bottom sub-cell absorber for triple junction solar cell , 2013 .

[22]  S. Mesropian,et al.  Development of advanced space solar cells at Spectrolab , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[23]  Hiroyuki Fujiwara,et al.  Effects of carrier concentration on the dielectric function of ZnO:Ga and In 2 O 3 : Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption , 2005 .

[24]  Diego Fischer,et al.  Microcrystalline silicon and micromorph tandem solar cells , 1999 .

[25]  Diego Caratelli,et al.  3‐D optical modeling of thin‐film silicon solar cells on diffraction gratings , 2013 .

[26]  R. Noufi,et al.  Properties of high-efficiency CIGS thin-film solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[27]  M. Kondo,et al.  Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells , 2010 .

[28]  C. Ballif,et al.  A New View of Microcrystalline Silicon: The Role of Plasma Processing in Achieving a Dense and Stable Absorber Material for Photovoltaic Applications , 2012 .

[29]  M. Kondo,et al.  High-Efficiency Microcrystalline Silicon and Microcrystalline Silicon-Germanium Alloy Solar Cells , 2011 .

[30]  J. Owens,et al.  Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells , 2009 .

[31]  C. Wronski,et al.  Dependence of recombination in protocrystalline a-Si:H films and cells on their different light induced gap states , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[32]  Mark W. Davis,et al.  Comparison of Photovoltaic Module Performance Measurements , 2006 .

[33]  P. Babál,et al.  Microstructure analysis of n-doped μc-SiOx:H reflector layers and their implementation in stable a-Si:H p-i-n junctions , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[34]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[35]  Yoshiaki Kanamori,et al.  Flattened light-scattering substrate in thin film silicon solar cells for improved infrared response , 2011 .

[36]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[37]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[38]  M. Zeman,et al.  Modelling of thin-film silicon solar cells , 2013 .

[39]  S. Nishikawa,et al.  Thickness dependence of staebler-wronski effect in a-Si:H , 1983 .

[40]  Miro Zeman,et al.  Modulated surface textures for enhanced light trapping in thin-film silicon solar cells , 2010 .

[41]  Christophe Ballif,et al.  Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate , 2012 .

[42]  M. Zeman,et al.  The effect of hydrogen dilution on glow discharge a-SiGe:H alloys , 1991 .

[43]  Christophe Ballif,et al.  TCOs for nip thin film silicon solar cells , 2009 .

[44]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[45]  Xixiang Xu,et al.  Development of Nanocrystalline Silicon Based Multi-junction Solar Cell Technology for High Volume Manufacturing , 2013 .

[46]  E. Yablonovitch Statistical ray optics , 1982 .

[47]  J. Meier,et al.  Recent Developments of High Efficiency Micromorph tandem solar cells in KAI-M PECVD reactors , 2010 .

[48]  Christophe Ballif,et al.  Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. , 2012, Nano letters.

[49]  Christophe Ballif,et al.  Optical management in high‐efficiency thin‐film silicon micromorph solar cells with a silicon oxide based intermediate reflector , 2008 .

[50]  Christophe Ballif,et al.  High‐efficiency microcrystalline silicon single‐junction solar cells , 2013 .

[51]  Ihsanul Afdi Yunaz,et al.  ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells , 2010 .

[52]  Miro Zeman Advanced Amorphous Silicon Solar Cell Technologies , 2006 .

[53]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[54]  Soo-Hyun Kim,et al.  Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology , 2013 .

[55]  M. Zeman,et al.  Advanced Light Trapping in Thin-film Silicon Solar Cells , 2010 .

[56]  M. Zeman,et al.  Modulated surface-textured substrates with high haze: From concept to application in thin-film silicon solar cells , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.