Regularized Least Squares Approximations on the Sphere Using Spherical Designs
暂无分享,去创建一个
Xiaojun Chen | Congpei An | Ian H. Sloan | Robert S. Womersley | I. Sloan | R. Womersley | Xiaojun Chen | Congpei An
[1] Xiaojun Chen,et al. Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.
[2] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[3] S. M. Nikol'skii,et al. APPROXIMATION OF FUNCTIONS ON THE SPHERE , 1988 .
[4] R. A. Silverman,et al. Theory of Functions of a Complex Variable , 1968 .
[5] Robert J. Bauer,et al. Distribution of Points on a Sphere with Application to Star Catalogs , 1998 .
[6] Manfred Reimer,et al. Multivariate Polynomial Approximation , 2003 .
[7] David L. Ragozin,et al. Constructive polynomial approximation on spheres and projective spaces. , 1971 .
[8] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[9] Eiichi Bannai,et al. A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..
[10] J. Seidel,et al. SPHERICAL CODES AND DESIGNS , 1991 .
[11] Volker Schönefeld. Spherical Harmonics , 2019, An Introduction to Radio Astronomy.
[12] Xiaojun Chen,et al. Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere , 2010, SIAM J. Numer. Anal..
[13] Xiaojun Chen,et al. Minimizing the Condition Number of a Gram Matrix , 2011, SIAM J. Optim..
[14] Holger Wendland,et al. Approximate Interpolation with Applications to Selecting Smoothing Parameters , 2005, Numerische Mathematik.
[15] Ian H. Sloan,et al. A variational characterisation of spherical designs , 2009, J. Approx. Theory.
[16] Ian H. Sloan,et al. How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..
[17] Ian H. Sloan,et al. The uniform norm of hyperinterpolation on the unit sphere in an arbitrary number of dimensions , 2001 .
[18] Gian-Carlo Rota,et al. Linear Operators and Approximation Theory. , 1965 .
[19] Ian H. Sloan,et al. Constructive Polynomial Approximation on the Sphere , 2000 .
[20] T. H. Gronwall. On the degree of convergence of Laplace’s series , 1914 .
[21] Woula Themistoclakis,et al. Polynomial approximation on the sphere using scattered data , 2008 .
[22] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[23] Andriy Bondarenko,et al. Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.
[24] Ian H. Sloan. Polynomial approximation on spheres - generalizing de la Vallée-Poussin , 2011, Comput. Methods Appl. Math..
[25] G. Wahba. Spline models for observational data , 1990 .
[26] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[27] Ian H. Sloan,et al. Polynomial interpolation and hyperinterpolation over general regions , 1995 .
[28] Robert J. Renka,et al. Multivariate interpolation of large sets of scattered data , 1988, TOMS.
[29] Ian H. Sloan,et al. Filtered hyperinterpolation: a constructive polynomial approximation on the sphere , 2012 .
[30] E. Saff,et al. Minimal Discrete Energy on the Sphere , 1994 .
[31] Xiaojun Chen,et al. Existence of Solutions to Systems of Underdetermined Equations and Spherical Designs , 2006, SIAM J. Numer. Anal..
[32] L. Schumaker,et al. Data fitting by penalized least squares , 1990 .
[33] Kendall Atkinson,et al. Numerical integration on the sphere , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[34] Manfred Reimer. Generalized Hyperinterpolation on the Sphere and the Newman—Shapiro Operators , 2002 .
[35] Max L. Warshauer,et al. Lecture Notes in Mathematics , 2001 .