Regularized Least Squares Approximations on the Sphere Using Spherical Designs

We consider polynomial approximation on the unit sphere $\mathbb{S}^2=\{(x,y,z)\in \mathbb{R}^3:x^2+y^2+z^2=1\}$ by a class of regularized discrete least squares methods with novel choices for the regularization operator and the point sets of the discretization. We allow different kinds of rotationally invariant regularization operators, including the zero operator (in which case the approximation includes interpolation, quasi-interpolation, and hyperinterpolation); powers of the negative Laplace--Beltrami operator (which can be suitable when there are data errors); and regularization operators that yield filtered polynomial approximations. As node sets we use spherical $t$-designs, which are point sets on the sphere which when used as equal-weight quadrature rules integrate all spherical polynomials up to degree $t$ exactly. More precisely, we use well conditioned spherical $t$-designs obtained in a previous paper by maximizing the determinants of the Gram matrices subject to the spherical design constra...

[1]  Xiaojun Chen,et al.  Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.

[2]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[3]  S. M. Nikol'skii,et al.  APPROXIMATION OF FUNCTIONS ON THE SPHERE , 1988 .

[4]  R. A. Silverman,et al.  Theory of Functions of a Complex Variable , 1968 .

[5]  Robert J. Bauer,et al.  Distribution of Points on a Sphere with Application to Star Catalogs , 1998 .

[6]  Manfred Reimer,et al.  Multivariate Polynomial Approximation , 2003 .

[7]  David L. Ragozin,et al.  Constructive polynomial approximation on spheres and projective spaces. , 1971 .

[8]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[9]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[10]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[11]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[12]  Xiaojun Chen,et al.  Well Conditioned Spherical Designs for Integration and Interpolation on the Two-Sphere , 2010, SIAM J. Numer. Anal..

[13]  Xiaojun Chen,et al.  Minimizing the Condition Number of a Gram Matrix , 2011, SIAM J. Optim..

[14]  Holger Wendland,et al.  Approximate Interpolation with Applications to Selecting Smoothing Parameters , 2005, Numerische Mathematik.

[15]  Ian H. Sloan,et al.  A variational characterisation of spherical designs , 2009, J. Approx. Theory.

[16]  Ian H. Sloan,et al.  How good can polynomial interpolation on the sphere be? , 2001, Adv. Comput. Math..

[17]  Ian H. Sloan,et al.  The uniform norm of hyperinterpolation on the unit sphere in an arbitrary number of dimensions , 2001 .

[18]  Gian-Carlo Rota,et al.  Linear Operators and Approximation Theory. , 1965 .

[19]  Ian H. Sloan,et al.  Constructive Polynomial Approximation on the Sphere , 2000 .

[20]  T. H. Gronwall On the degree of convergence of Laplace’s series , 1914 .

[21]  Woula Themistoclakis,et al.  Polynomial approximation on the sphere using scattered data , 2008 .

[22]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[23]  Andriy Bondarenko,et al.  Optimal asymptotic bounds for spherical designs , 2010, 1009.4407.

[24]  Ian H. Sloan Polynomial approximation on spheres - generalizing de la Vallée-Poussin , 2011, Comput. Methods Appl. Math..

[25]  G. Wahba Spline models for observational data , 1990 .

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  Ian H. Sloan,et al.  Polynomial interpolation and hyperinterpolation over general regions , 1995 .

[28]  Robert J. Renka,et al.  Multivariate interpolation of large sets of scattered data , 1988, TOMS.

[29]  Ian H. Sloan,et al.  Filtered hyperinterpolation: a constructive polynomial approximation on the sphere , 2012 .

[30]  E. Saff,et al.  Minimal Discrete Energy on the Sphere , 1994 .

[31]  Xiaojun Chen,et al.  Existence of Solutions to Systems of Underdetermined Equations and Spherical Designs , 2006, SIAM J. Numer. Anal..

[32]  L. Schumaker,et al.  Data fitting by penalized least squares , 1990 .

[33]  Kendall Atkinson,et al.  Numerical integration on the sphere , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[34]  Manfred Reimer Generalized Hyperinterpolation on the Sphere and the Newman—Shapiro Operators , 2002 .

[35]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .