Feature selection in melanoma recognition

Melanoma, one of the most aggressive types of cancer, can be healed, if recognized in early stages. In order to automate the early recognition of skin cancer; a system that analyses digital epiluminescence microscopic images is used. After segmentation, 33 features representing shape and radiometric properties are calculated. In the paper the quality of the features is evaluated by applying several feature selection methods. The results show that with each selection method the feature set can be reduced to dimension four with nearly no loss of information. Results with classification rates of up to 75% are achieved and relations between selected features and medical criteria are observed.