The potential to improve the choice: list conflict-free coloring for geometric hypergraphs
暂无分享,去创建一个
[1] Noga Alon,et al. Choice Numbers of Graphs: a Probabilistic Approach , 1992, Combinatorics, Probability and Computing.
[2] Michael Krivelevich,et al. Choosability in Random Hypergraphs , 2001, J. Comb. Theory, Ser. B.
[3] Géza Bohus,et al. On the Discrepancy of 3 Permutations , 1990, Random Struct. Algorithms.
[4] János Pach,et al. Coloring Axis-Parallel Rectangles , 2007, KyotoCGGT.
[5] Khaled M. Elbassioni,et al. Conflict-free coloring for rectangle ranges using O(n.382) colors , 2007, SPAA '07.
[6] Amotz Bar-Noy,et al. Online Conflict-Free Colouring for Hypergraphs , 2010, Comb. Probab. Comput..
[7] Micha Sharir,et al. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..
[8] Jitender S. Deogun,et al. On Vertex Ranking for Permutations and Other Graphs , 1994, STACS.
[9] Sariel Har-Peled,et al. On conflict-free coloring of points and simple regions in the plane , 2003, SCG '03.
[10] David Peleg,et al. Conflict-free coloring of unit disks , 2009, Discret. Appl. Math..
[11] J. Pach,et al. Conflict-free colorings , 2003 .
[12] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[13] Saurabh Ray,et al. Conflict-Free Coloring for Rectangle Ranges Using O(n.382) Colors , 2012, Discret. Comput. Geom..
[14] Dana Ron,et al. Conflict-Free Colorings of Simple Geometric Regions with Applications to Frequency Assignment in Cellular Networks , 2003, SIAM J. Comput..
[15] Shakhar Smorodinsky. On the chromatic number of some geometric hypergraphs , 2006, SODA '06.
[16] N. Alon. Restricted colorings of graphs , 1993 .
[17] Robert E. Tarjan,et al. Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[18] H. Djidjev. On the Problem of Partitioning Planar Graphs , 1982 .
[19] Balázs Keszegh,et al. Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs , 2010, SIAM J. Discret. Math..
[20] Shakhar Smorodinsky,et al. On The Chromatic Number of Geometric Hypergraphs , 2007, SIAM J. Discret. Math..
[21] Aravind Srinivasan,et al. The discrepancy of permutation families , 1997 .
[22] Balázs Keszegh,et al. Weak Conflict-Free Colorings of Point Sets and Simple Regions , 2007, CCCG.
[23] Suzanne M. Seager,et al. Ordered colourings , 1995, Discret. Math..
[24] János Pach,et al. Conflict-Free Colourings of Graphs and Hypergraphs , 2009, Combinatorics, Probability and Computing.
[25] Prosenjit Bose,et al. On properties of higher-order Delaunay graphs with applications , 2005, EuroCG.
[26] A. Bar-Noy,et al. Conflict-free coloring , 2009 .
[27] János Pach,et al. Coloring axis-parallel rectangles , 2010, J. Comb. Theory, Ser. A.
[28] Noga Alon,et al. Conflict-free colorings of shallow discs , 2006, SCG '06.
[29] Elad Horev,et al. Conflict-Free Coloring Made Stronger , 2010, SWAT.
[30] M. Sharir,et al. Combinatorial problems in computational geometry , 2003 .
[31] Carsten Thomassen,et al. Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.
[32] Amos Fiat,et al. Online conflict-free coloring for intervals , 2005, SODA '05.
[33] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[34] János Pach,et al. Delaunay graphs of point sets in the plane with respect to axis‐parallel rectangles , 2008, SODA '08.
[35] Géza Tóth,et al. Graph unique-maximum and conflict-free colorings , 2009, J. Discrete Algorithms.
[36] M. Sharir,et al. Online conflict-free coloring for halfplanes, congruent disks, and axis-parallel rectangles , 2009, TALG.