Constant Rank Two-Player Games are PPAD-hard

Finding a Nash equilibrium in a two-player normal form game (2-Nash) is one of the most extensively studied problems within mathematical economics as well as theoretical computer science. Such a ga...

[1]  Anne Condon,et al.  On Algorithms for Simple Stochastic Games , 1990, Advances In Computational Complexity Theory.

[2]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[3]  Christos H. Papadimitriou,et al.  On oblivious PTAS's for nash equilibrium , 2009, STOC '09.

[4]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[5]  Aranyak Mehta,et al.  Playing large games using simple strategies , 2003, EC '03.

[6]  Ilan Adler The equivalence of linear programs and zero-sum games , 2013, Int. J. Game Theory.

[7]  Xiaotie Deng,et al.  Sparse Games Are Hard , 2006, WINE.

[8]  Nikhil R. Devanur,et al.  An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case , 2003, FSTTCS.

[9]  Aranyak Mehta,et al.  Progress in approximate nash equilibria , 2007, EC '07.

[10]  Peter Bro Miltersen,et al.  The Complexity of Solving Stochastic Games on Graphs , 2009, ISAAC.

[11]  Andrew McLennan,et al.  Simple complexity from imitation games , 2010, Games Econ. Behav..

[12]  Rajmohan Rajaraman,et al.  Reducibility among Fractional Stability Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[13]  Adrian Vetta,et al.  Nash equilibria in random games , 2007 .

[14]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[15]  Paul W. Goldberg,et al.  The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[16]  Noga Alon,et al.  The approximate rank of a matrix and its algorithmic applications: approximate rank , 2013, STOC '13.

[17]  Ruta Mehta,et al.  Rank-1 bimatrix games: a homeomorphism and a polynomial time algorithm , 2011, STOC '11.

[18]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[19]  Evangelos Markakis,et al.  New algorithms for approximate Nash equilibria in bimatrix games , 2007, Theor. Comput. Sci..

[20]  Daniel M. Kane,et al.  On the complexity of two-player win-lose games , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[21]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[22]  Rahul Savani,et al.  Hard‐to‐Solve Bimatrix Games , 2006 .

[23]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[24]  Anne Balthasar Equilibrium tracing in strategic-form games , 2010 .

[25]  Dolf Talman,et al.  A procedure for finding Nash equilibria in bi-matrix games , 1991, ZOR Methods Model. Oper. Res..

[26]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[27]  E. Sperner Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .

[28]  Ruta Mehta,et al.  Bilinear Games: Polynomial Time Algorithms for Rank Based Subclasses , 2011, WINE.

[29]  Paul G. Spirakis,et al.  An Optimization Approach for Approximate Nash Equilibria , 2007, WINE.

[30]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[31]  Christos H. Papadimitriou,et al.  On Total Functions, Existence Theorems and Computational Complexity , 1991, Theor. Comput. Sci..