A unifying combinatorial approach to refined little Göllnitz and Capparelli's companion identities

Abstract Berkovich–Uncu have recently proved a companion of the well-known Capparelli's identities as well as refinements of Savage–Sills's new little Gollnitz identities. Noticing the connection between their results and Boulet's earlier four-parameter partition generating functions, we discover a new class of partitions, called k-strict partitions, to generalize their results. By applying both horizontal and vertical dissections of Ferrers' diagrams with appropriate labellings, we provide a unified combinatorial treatment of their results and shed more lights on the intriguing conditions of their companion to Capparelli's identities.

[1]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[2]  Stefano Capparelli,et al.  A combinatorial proof of a partition identity related to the level 3 representations of a twisted affine lie algebra , 1995 .

[3]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[4]  Andrew V. Sills,et al.  On series expansions of Capparelli's infinite product , 2004, Adv. Appl. Math..

[5]  George E. Andrews,et al.  Two theorems of Gauss and allied identities proved arithmetically. , 1972 .

[6]  K. Alladi,et al.  Refinements and Generalizations of Capparelli′s Conjecture on Partitions , 1995 .

[7]  Cilanne E. Boulet A four-parameter partition identity , 2003 .

[8]  Aaron Robertson,et al.  Schur’s theorem , 2003 .

[9]  Jehanne Dousse A combinatorial proof and refinement of a partition identity of Siladić , 2014, Eur. J. Comb..

[10]  Alexander Berkovich,et al.  Some Observations on Dyson's New Symmetries of Partitions , 2002, J. Comb. Theory, Ser. A.

[11]  Alexander Berkovich,et al.  ON THE ANDREWS-STANLEY REFINEMENT OF RAMANUJAN'S PARTITION CONGRUENCE MODULO 5 , 2004, math/0402439.

[12]  Alexander Berkovich,et al.  The BG-rank of a partition and its applications , 2008, Adv. Appl. Math..

[13]  George E. Andrews On a Partition Function of Richard Stanley , 2004, Electron. J. Comb..

[14]  Krishnaswami Alladi,et al.  Partitions with Non-Repeating Odd Parts and Q-Hypergeometric Identities , 2010 .

[15]  Ae Ja Yee On partition functions of Andrews and Stanley , 2004, J. Comb. Theory, Ser. A.

[16]  Andrew V. Sills,et al.  On an identity of Gessel and Stanton and the new little Göllnitz identities , 2011, Adv. Appl. Math..

[17]  Alexander Berkovich,et al.  On partitions with fixed number of even-indexed and odd-indexed odd parts , 2015, 1510.07301.

[18]  Manvendra Tamba,et al.  Level three standard modules for A2(2) and combinatorial identities , 1995 .

[19]  Alexander Berkovich,et al.  A new companion to Capparelli's identities , 2015, Adv. Appl. Math..

[20]  George E. Andrews,et al.  A generalization of the Göllnitz-Gordon partition theorems , 1967 .

[21]  Jiang Zeng,et al.  The Andrews-Stanley partition function and Al-Salam-Chihara polynomials , 2009, Discret. Math..

[22]  Karl Mahlburg,et al.  False theta functions and companions to Capparelli's identities , 2014, 1404.3113.

[23]  G. Meinardus,et al.  Über Partitionen mit Differenzenbedingungen , 1954 .

[24]  Andrew V. Sills A Combinatorial proof of a partition identity of Andrews and Stanley , 2004, Int. J. Math. Math. Sci..

[25]  Richard P. Stanley Some remarks on sign-balanced and maj-balanced posets , 2005, Adv. Appl. Math..

[26]  James A. Sellers,et al.  Arithmetic properties of partitions with odd parts distinct , 2010 .

[27]  Jehanne Dousse,et al.  Generalizations of Capparelli's identity , 2018, Bulletin of the London Mathematical Society.