Osmium nanoislands spontaneously deposited on a Pt(111) electrode: an XPS, STM and GIF-XAS study

[1]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[2]  Masahiro Watanabe,et al.  Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms , 1975 .

[3]  James D. Brown,et al.  ESCA study of sputtered platinum films , 1975 .

[4]  C. Rao,et al.  XPES studies of oxides of second- and third-row transition metals including rare earths , 1980 .

[5]  A. Hamnett,et al.  Bimetallic carbon supported anodes for the direct methanol-air fuel cell , 1988 .

[6]  A. Hamnett,et al.  Pt$z.sbnd;Ru anodes for methanol electrooxidation: A ruthenium-99 Mssbauer study , 1990 .

[7]  F. Lytle,et al.  Analysis of x-ray absorption edge data on metal catalysts , 1992 .

[8]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[9]  M. Wrighton,et al.  Electrocatalytic oxidation of methanol and ethanol: a comparison of platinum-tin and platinum-ruthenium catalyst particles in a conducting polyaniline matrix , 1993 .

[10]  Pacchioni,et al.  Surface-bulk core-level binding-energy shifts for Al(100). , 1993, Physical review. B, Condensed matter.

[11]  C. Powell Elemental binding energies for X-ray photoelectron spectroscopy , 1995 .

[12]  S. Mukerjee,et al.  In Situ X‐Ray Absorption Studies of a Pt‐Ru Electrocatalyst , 1995 .

[13]  Xiaoming Ren,et al.  Pem fuel cells for transportation and stationary power generation applications , 1996 .

[14]  Y. Iwasawa X-Ray Absorption Fine Structure for Catalysts and Surfaces , 1996 .

[15]  M. J. Weaver,et al.  High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies , 1997 .

[16]  C. Pu,et al.  Methanol Oxidation on Single‐Phase Pt‐Ru‐Os Ternary Alloys , 1997 .

[17]  James M. Fenton,et al.  Evaluation of Platinum‐Based Catalysts for Methanol Electro‐oxidation in Phosphoric Acid Electrolyte , 1997 .

[18]  A. Wiȩckowski,et al.  Ultrathin Films of Ruthenium on Low Index Platinum Single Crystal Surfaces: An Electrochemical Study , 1997 .

[19]  K. Friedrich,et al.  Surface structural and chemical characterization of Pt/Ru composite electrodes: a combined study by XPS, STM and IR spectroscopy , 1997 .

[20]  A. Wiȩckowski,et al.  Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum electrodes , 1998 .

[21]  T. Mallouk,et al.  Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation1 , 1998 .

[22]  Reddington,et al.  Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts , 1998, Science.

[23]  A. Wiȩckowski,et al.  Scanning tunneling microscopy images of ruthenium submonolayers spontaneously deposited on a Pt(111) electrode , 1999 .

[24]  Fulvio Parmigiani,et al.  Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding , 1999 .

[25]  D. Rolison,et al.  Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity , 1999 .

[26]  Li Liu,et al.  Methanol Oxidation on Nation Spin‐Coated Polycrystalline Platinum and Platinum Alloys , 1999 .

[27]  K. Friedrich,et al.  Bulk Metal Electrodeposition in the Sub-monolayer Regime: Ru on Pt(111)* , 1999 .

[28]  K. Fukuzaki,et al.  X-ray photoelectron spectroscopy of highly conducting and amorphous osmium dioxide thin films , 1999 .

[29]  David A. J. Rand,et al.  Direct methanol–air fuel cells for road transportation , 1999 .

[30]  Andrzej Wieckowski,et al.  Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes ‘decorated’ by ruthenium adlayers , 1999 .

[31]  A. Wiȩckowski,et al.  Potential-Dependent Infrared Absorption Spectroscopy of Adsorbed CO and X-ray Photoelectron Spectroscopy of Arc-Melted Single-Phase Pt, PtRu, PtOs, PtRuOs, and Ru Electrodes , 2000 .

[32]  K. Swider-Lyons,et al.  How To Make Electrocatalysts More Active for Direct Methanol OxidationAvoid PtRu Bimetallic Alloys , 2000 .

[33]  Yimin Zhu,et al.  Methanol Oxidation at the Electrochemical Codeposited Pt-Os Composite Electrode , 2001 .

[34]  A. Wiȩckowski,et al.  Methanol Electrooxidation on Platinum/Ruthenium Nanoparticle Catalysts , 2001 .

[35]  A. Wiȩckowski,et al.  Chemical state of ruthenium submonolayers on a Pt(111) electrode , 2001 .

[36]  A. Wiȩckowski,et al.  Scanning tunneling microscopy investigations of ruthenium- and osmium-modified Pt(100) and Pt(110) single crystal substrates , 2001 .

[37]  A. Wiȩckowski,et al.  Examination of Pt(111)/Ru and Pt(111)/Os surfaces: STM imaging and methanol oxidation activity , 2001 .

[38]  B. Gurau,et al.  Deuterium isotope analysis of methanol oxidation on mixed metal anode catalysts , 2002 .

[39]  A. Wiȩckowski,et al.  Growth of ruthenium islands on Pt(hkl) electrodes obtained via repetitive spontaneous deposition , 2002 .

[40]  Jong-Ho Choi,et al.  Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation , 2002 .

[41]  Z. Nagy,et al.  Applications of surface X-ray scattering to electrochemistry problems , 2002 .

[42]  A. Dickinson Preparation of a Pt$z.sbnd;Ru/C catalyst from carbonyl complexes for fuel cell applications , 2002 .

[43]  G. Mickelson,et al.  In-Situ XANES of Carbon-Supported Pt−Ru Anode Electrocatalyst for Reformate-Air Polymer Electrolyte Fuel Cells , 2002 .