The use of animal models in diabetes research

Diabetes is a disease characterized by a relative or absolute lack of insulin, leading to hyperglycaemia. There are two main types of diabetes: type 1 diabetes and type 2 diabetes. Type 1 diabetes is due to an autoimmune destruction of the insulin‐producing pancreatic beta cells, and type 2 diabetes is caused by insulin resistance coupled by a failure of the beta cell to compensate. Animal models for type 1 diabetes range from animals with spontaneously developing autoimmune diabetes to chemical ablation of the pancreatic beta cells. Type 2 diabetes is modelled in both obese and non‐obese animal models with varying degrees of insulin resistance and beta cell failure. This review outlines some of the models currently used in diabetes research. In addition, the use of transgenic and knock‐out mouse models is discussed. Ideally, more than one animal model should be used to represent the diversity seen in human diabetic patients.

[1]  A. Rossini,et al.  Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. , 1976, Science.

[2]  Yang Yang,et al.  Lessons on autoimmune diabetes from animal models. , 2006, Clinical science.

[3]  K. Peh,et al.  Preparation, characterization, and in vivo evaluation of insulin-loaded PLA–PEG microspheres for controlled parenteral drug delivery , 2009, Drug development and industrial pharmacy.

[4]  Jong-Suk Kim,et al.  Role of Ca2+ in alloxan-induced pancreatic β-cell damage , 1994 .

[5]  Andrew D. Paterson,et al.  Type 1 Diabetes in the BB Rat: A Polygenic Disease , 2009, Diabetes.

[6]  J. Miyazaki,et al.  Gender Difference in ICER Iγ Transgenic Diabetic Mouse , 2007 .

[7]  M. Maffei,et al.  Positional cloning of the mouse obese gene and its human homologue , 1995, Nature.

[8]  M. Lukic,et al.  Effector Mechanisms in Low-Dose Streptozotocin-induced Diabetes , 1998, Developmental immunology.

[9]  D. Kemp,et al.  Minireview: transcriptional regulation in pancreatic development. , 2005, Endocrinology.

[10]  L. Tartaglia,et al.  Evidence That the Diabetes Gene Encodes the Leptin Receptor: Identification of a Mutation in the Leptin Receptor Gene in db/db Mice , 1996, Cell.

[11]  T Szkudelski,et al.  The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. , 2001, Physiological research.

[12]  D. Melton,et al.  Recovery from diabetes in mice by β cell regeneration , 2007 .

[13]  C. Bailey,et al.  New drugs for type 2 diabetes mellitus: what is their place in therapy? , 2008, Drugs.

[14]  N. Eberhardt,et al.  Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models , 2011, Laboratory animals.

[15]  I. Swenne,et al.  Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro , 1983, Diabetologia.

[16]  P. Santamaria,et al.  Dissecting autoimmune diabetes through genetic manipulation of non-obese diabetic mice , 2003, Diabetologia.

[17]  R. Bergman,et al.  Novel canine models of obese prediabetes and mild type 2 diabetes. , 2010, American journal of physiology. Endocrinology and metabolism.

[18]  Soo-young Park,et al.  Glycemic Control Promotes Pancreatic Beta-Cell Regeneration in Streptozotocin-Induced Diabetic Mice , 2010, PloS one.

[19]  D. Wedekind,et al.  Prevention of spontaneous immune-mediated diabetes development in the LEW.1AR1-iddm rat by selective CD8+ T cell transfer is associated with a cytokine shift in the pancreas-draining lymph nodes , 2009, Diabetologia.

[20]  R. Elliott,et al.  Low dose streptozotocin causes diabetes in severe combined immunodeficient (SCID) mice without immune cell infiltration of the pancreatic islets. , 1995, Autoimmunity.

[21]  L. Wen,et al.  IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. , 2011, Clinical immunology.

[22]  G. Evan,et al.  Regulated β-Cell Regeneration in the Adult Mouse Pancreas , 2008, Diabetes.

[23]  S. Bonner-Weir,et al.  Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. , 1983, The Journal of clinical investigation.

[24]  J. Driver,et al.  Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease , 2010, Seminars in Immunopathology.

[25]  J. Oh,et al.  Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus , 2010, The Journal of pharmacy and pharmacology.

[26]  K. Mochizuki,et al.  Treatment with the α-glucosidase inhibitor miglitol from the preonset stage in Otsuka Long-Evans Tokushima Fatty rats improves glycemic control and reduces the expression of inflammatory cytokine genes in peripheral leukocytes. , 2011, Metabolism: clinical and experimental.

[27]  M. Phillips,et al.  Leptin receptor missense mutation in the fatty Zucker rat , 1996, Nature Genetics.

[28]  D. Guberski,et al.  Kilham Rat Virus Triggers T-Cell–Dependent Autoimmune Diabetes in Multiple Strains of Rat , 1996, Diabetes.

[29]  Zhiguang Guo,et al.  Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. , 2010, Endocrinology.

[30]  O. Yoshinari,et al.  Anti-diabetic effect of pyroglutamic acid in type 2 diabetic Goto-Kakizaki rats and KK-A y mice , 2011 .

[31]  K. Kawano,et al.  OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. , 1994, Diabetes research and clinical practice.

[32]  L. B. Knudsen Liraglutide: the therapeutic promise from animal models , 2010, International journal of clinical practice. Supplement.

[33]  P. Flatt,et al.  Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. , 2011, Clinical science.

[34]  D. Severson,et al.  Vascular dysfunction in type 2 diabetic TallyHo mice: role for an increase in the contribution of PGH2/TxA2 receptor activation and cytochrome p450 products. , 2007, Canadian journal of physiology and pharmacology.

[35]  D. Wedekind,et al.  Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. , 2005, Diabetes.

[36]  J. Kaprio,et al.  Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. , 2003, Diabetes.

[37]  K. Sharma,et al.  Diabetic nephropathy: of mice and men. , 2005, Advances in chronic kidney disease.

[38]  A. Shimada,et al.  Encephalomyocarditis-virus-induced diabetes model resembles “fulminant” Type 1 diabetes in humans , 2004, Diabetologia.

[39]  J. Wahren,et al.  C‐peptide improves neuropathy in type 1 diabetic BB/Wor‐rats , 2007, Diabetes/metabolism research and reviews.

[40]  S. Bonner-Weir,et al.  Porcine marginal mass islet autografts resist metabolic failure over time and are enhanced by early treatment with liraglutide. , 2009, Endocrinology.

[41]  M. Nitert,et al.  Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance. , 2007, The Journal of endocrinology.

[42]  A. Signore,et al.  NOD mouse colonies around the world--recent facts and figures. , 1993, Immunology today.

[43]  Mark D. Johnson,et al.  Early neonatal death in mice homozygous for a null allele of the insulin receptor gene , 1996, Nature Genetics.

[44]  M. V. von Herrath,et al.  Pathogenesis and treatment of virus-induced autoimmune diabetes: novel insights gained from the RIP-LCMV transgenic mouse model. , 1997, Biochemical Society transactions.

[45]  M. Niv,et al.  Prevention of insulin resistance and beta‐cell loss by abrogating PKCε‐induced serine phosphorylation of muscle IRS‐1 in Psammomys obesus , 2008, Diabetes/metabolism research and reviews.

[46]  B. Portha,et al.  Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. , 2001, Diabetes.

[47]  D. Wedekind,et al.  The insulin–melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus) , 2011, Diabetologia.

[48]  N. Morgan,et al.  The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes , 2009, Diabetologia.

[49]  C. Mathews Utility of murine models for the study of spontaneous autoimmune type 1 diabetes , 2005, Pediatric diabetes.

[50]  O. Vaarala,et al.  Simvastatin Protects against Multiple Low-Dose Streptozotocin-Induced Type 1 Diabetes in CD-1 Mice and Recurrence of Disease in Nonobese Diabetic Mice , 2007, Journal of Pharmacology and Experimental Therapeutics.

[51]  T. O’Brien,et al.  Pathogenesis of feline diabetes mellitus , 2002, Molecular and Cellular Endocrinology.

[52]  C. Mathews,et al.  Constitutive differences in antioxidant defense status distinguish alloxan-resistant and alloxan-susceptible mice. , 1999, Free radical biology & medicine.

[53]  P. Butler,et al.  Successful Versus Failed Adaptation to High-Fat Diet–Induced Insulin Resistance , 2009, Diabetes.

[54]  I. Rooman,et al.  In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells , 2004, Diabetologia.

[55]  J. Naggert,et al.  Type 2 diabetes mouse model TallyHo carries an obesity gene on chromosome 6 that exaggerates dietary obesity. , 2005, Physiological genomics.

[56]  B. Tyrberg,et al.  Reduced sensitivity of inducible nitric oxide synthase-deficient mice to multiple low-dose streptozotocin-induced diabetes. , 1999, Diabetes.

[57]  Jie Zhang,et al.  Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. , 2011, International journal of molecular medicine.

[58]  D. Bellinger,et al.  Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. , 2006, ILAR journal.

[59]  Kylie Kavanagh,et al.  Old world nonhuman primate models of type 2 diabetes mellitus. , 2006, ILAR journal.

[60]  M. Saito,et al.  Effects of cyclohexenonic long-chain fatty alcohol in type 2 diabetic rat nephropathy. , 2010, Biomedical research.

[61]  Leslie C. Sherwood,et al.  Creating a Long-Term Diabetic Rabbit Model , 2010, Experimental diabetes research.

[62]  K. Mochizuki,et al.  The alpha-glucosidase inhibitor miglitol delays the development of diabetes and dysfunctional insulin secretion in pancreatic beta-cells in OLETF rats. , 2009, European journal of pharmacology.

[63]  C. Álvarez,et al.  Type 2 diabetes – a matter of failing β‐cell neogenesis? Clues from the GK rat model , 2007, Diabetes, obesity & metabolism.

[64]  D. Wedekind,et al.  Pathology of the pancreas and other organs in the diabetic LEW.1AR1/Ztm-iddm rat, a new model of spontaneous insulin-dependent diabetes mellitus , 2004, Virchows Archiv.

[65]  M. Maffei,et al.  Positional cloning of the mouse obese gene and its human homologue , 1994, Nature.

[66]  M. Ezzati,et al.  National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants , 2011, The Lancet.

[67]  J. Daly Limitations of the db/db mouse in translational wound healing research: Is the NONcNZO10 polygenic mouse model superior? , 2011 .

[68]  R. Margalit,et al.  Insights into modeling streptozotocin-induced diabetes in ICR mice , 2009, Lab Animal.

[69]  D. Eizirik,et al.  Interleukin-1 receptor antagonist prevents low dose streptozotocin induced diabetes in mice. , 1994, Biochemical and biophysical research communications.

[70]  E. Feldman,et al.  Mouse models of diabetic neuropathy , 2007, Neurobiology of Disease.

[71]  D. Pipeleers,et al.  Impairment of glucose-induced insulin secretion in human pancreatic islets transplanted to diabetic nude mice. , 1995, The Journal of clinical investigation.

[72]  B. Portha,et al.  Diabetogenic Effect of Streptozotocin in the Rat During the Perinatal Period , 1974, Diabetes.

[73]  E. Ziv,et al.  Changing pattern of prevalence of insulin resistance in Psammomys obesus, a model of nutritionally induced type 2 diabetes. , 1999, Metabolism: clinical and experimental.

[74]  D. Greiner,et al.  Humanized Mice for the Study of Type 1 Diabetes and Beta Cell Function , 2008, Annals of the New York Academy of Sciences.

[75]  J. Miyazaki,et al.  Gender difference in ICER Igamma transgenic diabetic mouse. , 2007, Bioscience, biotechnology, and biochemistry.

[76]  D. Wedekind,et al.  The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus , 2001, Diabetologia.

[77]  Steffen Jung,et al.  A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration , 2005, Nature Methods.

[78]  L. Recant,et al.  Functional abnormalities of islets of Langerhans of obese hyperglycemic mouse. , 1977, The American journal of physiology.

[79]  E. Leiter,et al.  The Diabetes-Prone NZO/Hl Strain. II. Pancreatic Immunopathology , 2002, Laboratory Investigation.

[80]  K. Mather Surrogate measures of insulin resistance: of rats, mice, and men. , 2009, American journal of physiology. Endocrinology and metabolism.

[81]  K. Wakitani,et al.  Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats. , 2000, British journal of pharmacology.

[82]  Hitoshi Ikeda,et al.  KK mouse. , 1994, Diabetes research and clinical practice.

[83]  Matthew R. Geringer,et al.  The TallyHo Polygenic Mouse Model of Diabetes: Implications in Wound Healing , 2011, Plastic and reconstructive surgery.

[84]  B. Hering,et al.  Successful islet auto- and allotransplantation in diabetic pigs. , 1998, Transplantation.

[85]  N. Nardi,et al.  Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice , 2011, Diabetologia.

[86]  I. Sjöholm,et al.  Blood glucose-lowering activity of a hyaluronan-insulin complex after oral administration to rats with diabetes. , 2005, Diabetes technology & therapeutics.

[87]  E. Leiter,et al.  Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. , 2004, Diabetes.

[88]  L. Borg,et al.  Species differences in susceptibility of transplanted and cultured pancreatic islets to the beta-cell toxin alloxan. , 2001, General and comparative endocrinology.

[89]  Song Li,et al.  P633H, a novel dual agonist at peroxisome proliferator‐activated receptors α and γ, with different anti‐diabetic effects in db/db and KK‐Ay mice , 2009, British journal of pharmacology.

[90]  C. Mathews,et al.  New mouse model to study islet transplantation in insulin-dependent diabetes mellitus , 2002, Transplantation.

[91]  D. Greiner,et al.  Rat models of type 1 diabetes: genetics, environment, and autoimmunity. , 2004, ILAR journal.

[92]  M. Feinglos,et al.  Diet-Induced Type II Diabetes in C57BL/6J Mice , 1988, Diabetes.

[93]  R. W. Johnson,et al.  Intraportal autotransplantation of cryopreserved porcine islets of Langerhans. , 1985, Cryobiology.

[94]  A. Thorburn,et al.  Impaired Regulation of Hepatic Fructose-1,6-Bisphosphatase in the New Zealand Obese Mouse Model of NIDDM , 1993, Diabetes.

[95]  J. Friedman,et al.  Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Field,et al.  TOTAL PANCREATECTOMY IN THE PIG FOR ISLET TRANSPLANTATION TECHNICAL ALTERNATIVES , 1991, Transplantation.

[97]  G. Seghieri,et al.  Are the available experimental models of type 2 diabetes appropriate for a gender perspective? , 2008, Pharmacological research.

[98]  F. Ashcroft,et al.  Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes. , 2008, The Journal of clinical investigation.

[99]  Stella Pelengaris,et al.  Regulated beta-cell regeneration in the adult mouse pancreas. , 2008, Diabetes.

[100]  Kara Hunter,et al.  Type 1 diabetes genes and pathways shared by humans and NOD mice. , 2005, Journal of autoimmunity.

[101]  A. Hafezi-Moghadam,et al.  An animal model of spontaneous metabolic syndrome: Nile grass rat , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[102]  R. Cox,et al.  Mouse models and the interpretation of human GWAS in type 2 diabetes and obesity , 2011, Disease Models & Mechanisms.

[103]  M. Vranic,et al.  Low-dose IGF-I has no selective advantage over insulin in regulating glucose metabolism in hyperglycemic depancreatized dogs. , 2001, The Journal of endocrinology.

[104]  M. V. von Herrath,et al.  How viral infections enhance or prevent type 1 diabetes‐from mouse to man , 2011, Journal of medical virology.

[105]  T. C. Jones,et al.  Nonhuman Primates I , 1993, Monographs on Pathology of Laboratory Animals.

[106]  J. W. Park,et al.  Role of Ca2+ in alloxan-induced pancreatic beta-cell damage. , 1994, Biochimica et biophysica acta.

[107]  B. Pakkenberg,et al.  Increased islet volume but unchanged islet number in ob/ob mice. , 2003, Diabetes.

[108]  R. Joshi,et al.  Phenotypic alterations in insulin-deficient mutant mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[109]  N. Ahmad,et al.  Alloxan-glucose interaction: Effect on incorporation of14C-leucine into pancreatic islets of rat , 1980, Acta diabetologia latina.

[110]  T. O’Brien,et al.  Feline models of type 2 diabetes mellitus. , 2006, ILAR journal.

[111]  D. Guberski,et al.  Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. , 1996, Diabetes.

[112]  G. Nepom,et al.  Animal models of human type 1 diabetes , 2009, Nature Immunology.

[113]  J. Craighead,et al.  Diabetes Mellitus: Induction in Mice by Encephalomyocarditis Virus , 1968, Science.

[114]  D. Wedekind,et al.  Diabetes prevention by immunomodulatory FTY720 treatment in the LEW.1AR1-iddm rat despite immune cell activation. , 2010, Endocrinology.

[115]  E. Leiter,et al.  The Diabetes-Prone NZO/HlLt Strain. I. Immunophenotypic Comparison to the Related NZB/BlNJ and NZW/LacJ Strains , 2002, Laboratory Investigation.

[116]  C. Bailey,et al.  New Drugs for Type 2 Diabetes Mellitus , 2012, Drugs.

[117]  T. Jin,et al.  The role of insulin signaling in the development of β-cell dysfunction and diabetes , 2009, Islets.

[118]  E. Leiter,et al.  Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. , 2007, American journal of physiology. Endocrinology and metabolism.

[119]  D. Melton,et al.  Recovery from diabetes in mice by beta cell regeneration. , 2007, The Journal of clinical investigation.

[120]  J. Toney,et al.  Age dependence of glucose tolerance in adult KK-Ay mice, a model of non–insulin dependent diabetes mellitus , 2009, Lab Animal.

[121]  J. Henquin,et al.  Pharmacological stimulation and inhibition of insulin secretion in mouse islets lacking ATP‐sensitive K+ channels , 2010, British journal of pharmacology.

[122]  H. Baek,et al.  Direct Involvement of Macrophages in Destruction of β-Cells Leading to Development of Diabetes in Virus-Infected Mice , 1991, Diabetes.

[123]  M. Aouni,et al.  Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models , 2009, Diabetes/metabolism research and reviews.

[124]  P. Berggren,et al.  Lowering apolipoprotein CIII delays onset of type 1 diabetes , 2011, Proceedings of the National Academy of Sciences.

[125]  R. Kulkarni,et al.  Molecular approaches to study control of glucose homeostasis. , 2006, ILAR journal.

[126]  K. Buschard,et al.  Iodine and tri-iodo-thyronine reduce the incidence of type 1 diabetes mellitus in the autoimmune prone BB rats , 2009, Autoimmunity.

[127]  K. Haurogné,et al.  Diabetes acceleration by cyclophosphamide in the non-obese diabetic mouse is associated with differentiation of immunosuppressive monocytes into immunostimulatory cells. , 2010, Immunology letters.

[128]  P. Halban,et al.  Hypercholesterolaemia, signs of islet microangiopathy and altered angiogenesis precede onset of type 2 diabetes in the Goto–Kakizaki (GK) rat , 2011, Diabetologia.

[129]  D. Guberski,et al.  Induction of type I diabetes by Kilham's rat virus in diabetes-resistant BB/Wor rats. , 1991, Science.

[130]  Brian C. Pridgen,et al.  Hyperglycemic Ins2AkitaLdlr−/− mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease[S] , 2011, Journal of Lipid Research.

[131]  J. Todd,et al.  Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. , 2001, Immunity.

[132]  A. Green,et al.  Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study , 2009, The Lancet.

[133]  J. Elmquist,et al.  PANIC-ATTAC: A Mouse Model for Inducible and Reversible β-Cell Ablation , 2008, Diabetes.

[134]  S. Bonner-Weir,et al.  Importance of hyperglycemia on the primary function of allogeneic islet transplants1 , 2003, Transplantation.

[135]  E. D. de Koning,et al.  Molecular physiology of the islet amyloid polypeptide (IAPP)/amylin gene in man, rat, and transgenic mice , 1994, Journal of cellular biochemistry.

[136]  J. Montane,et al.  Prevention of murine autoimmune diabetes by CCL22-mediated Treg recruitment to the pancreatic islets. , 2011, The Journal of clinical investigation.

[137]  L. B. Knudsen,et al.  Liraglutide, but not vildagliptin, restores normoglycaemia and insulin content in the animal model of type 2 diabetes, Psammomys obesus , 2010, Regulatory Peptides.

[138]  Philip Zeitler,et al.  The global spread of type 2 diabetes mellitus in children and adolescents. , 2005, The Journal of pediatrics.

[139]  S. Matsumoto Autologous islet cell transplantation to prevent surgical diabetes , 2011, Journal of diabetes.

[140]  E. Montanya,et al.  Pancreatic remodeling: beta-cell apoptosis, proliferation and neogenesis, and the measurement of beta-cell mass and of individual beta-cell size. , 2009, Methods in molecular biology.

[141]  Y. Kang,et al.  Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain , 1994, Journal of medical virology.

[142]  B. Ahrén,et al.  The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. , 2004, Diabetes.

[143]  P. Lindström The Physiology of Obese-Hyperglycemic Mice [ob/ob Mice] , 2007, TheScientificWorldJournal.

[144]  J. Hillebrands,et al.  Viral infections as potential triggers of type 1 diabetes , 2007, Diabetes/metabolism research and reviews.

[145]  Sirong He,et al.  Treatment and risk factor analysis of hypoglycemia in diabetic rhesus monkeys , 2011, Experimental biology and medicine.

[146]  E. Ziv,et al.  Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). , 2006, ILAR journal.

[147]  A. Schürmann,et al.  Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure , 2010, Diabetologia.

[148]  A. Vaag,et al.  Treatment with a proton pump inhibitor improves glycaemic control in Psammomys obesus, a model of type 2 diabetes , 2010, Diabetologia.

[149]  L. Bouwens,et al.  Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats , 1995, Diabetologia.

[150]  G. Tomadze,et al.  Streptozotocin-Induced Diabetes Mellitus in Pigs , 1993, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[151]  J. Takahashi,et al.  Generation of N-Ethyl-N-nitrosourea (ENU) Diabetes Models in Mice Demonstrates Genotype-specific Action of Glucokinase Activators* , 2011, The Journal of Biological Chemistry.

[152]  C. Kahn,et al.  Knockout Mice Challenge our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes , 2003, Experimental diabesity research.

[153]  F. Chehab,et al.  Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin , 1996, Nature Genetics.

[154]  S. Bonner-Weir,et al.  Towards better understanding of the contributions of overwork and glucotoxicity to the β‐cell inadequacy of type 2 diabetes , 2009, Diabetes, obesity & metabolism.

[155]  N. Welsh,et al.  Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[156]  F. Ashcroft,et al.  A mutation in KCNJ11 causing human hyperinsulinism (Y12X) results in a glucose-intolerant phenotype in the mouse , 2010, Diabetologia.

[157]  Roger D. Cox,et al.  A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO Gene , 2009, PLoS genetics.

[158]  J. Kirwan,et al.  Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults. , 2008, Journal of applied physiology.

[159]  Y. Gotō,et al.  Production of spontaneous diabetic rats by repetition of selective breeding. , 1976, The Tohoku journal of experimental medicine.

[160]  K. Wakitani,et al.  Effects of peroxisome proliferator‐activated receptor‐α and ‐γ agonist, JTT‐501, on diabetic complications in Zucker diabetic fatty rats , 2000, British journal of pharmacology.

[161]  F. Pociot,et al.  On the pathogenesis of IDDM , 1994, Diabetologia.

[162]  Yiying Zhang,et al.  Open Access Research , 2022 .

[163]  B. Curfman,et al.  Coxsackie Virus B4 Produces Transient Diabetes in Nonhuman Primates , 1986, Diabetes.

[164]  G. Rutter,et al.  Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion , 2010, Diabetologia.

[165]  P. Ramarao,et al.  Animal models in type 2 diabetes research: an overview. , 2007, The Indian journal of medical research.

[166]  G. Beauchamp,et al.  Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice , 2001, Physiology & Behavior.

[167]  Mi Young Lee,et al.  Effects of Spironolactone and Losartan on Diabetic Nephropathy in a Type 2 Diabetic Rat Model , 2011, Diabetes & metabolism journal.

[168]  H. Jun,et al.  Cellular and Molecular Pathogenic Mechanisms of Insulin‐Dependent Diabetes Mellitus , 2001, Annals of the New York Academy of Sciences.

[169]  J. Rodin,et al.  Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. , 1995, Metabolism: clinical and experimental.

[170]  P. Schott-Ohly,et al.  Molecular target structures in alloxan-induced diabetes in mice. , 2002, Life sciences.

[171]  E. Liepinsh,et al.  Protective effects of mildronate in an experimental model of type 2 diabetes in Goto‐Kakizaki rats , 2009, British journal of pharmacology.

[172]  G. Bell,et al.  Transgenic mice with green fluorescent protein-labeled pancreatic β-cells , 2003 .

[173]  C. Kahn,et al.  Impact of genetic background on development of hyperinsulinemia and diabetes in insulin receptor/insulin receptor substrate-1 double heterozygous mice. , 2003, Diabetes.

[174]  R. Tisch,et al.  Insulin-Dependent Diabetes Mellitus , 1996, Cell.

[175]  B. Nilsson,et al.  Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism , 2009, Laboratory animals.

[176]  Y. Matsuzawa,et al.  The NOD mouse. , 1994, Diabetes research and clinical practice.

[177]  Woo-Jin Song,et al.  The use of animal models to study stem cell therapies for diabetes mellitus. , 2009, ILAR journal.

[178]  G. Bell,et al.  Transgenic mice with green fluorescent protein-labeled pancreatic beta -cells. , 2003, American journal of physiology. Endocrinology and metabolism.

[179]  E. Leiter Selecting the "right" mouse model for metabolic syndrome and type 2 diabetes research. , 2009, Methods in molecular biology.

[180]  M. Dolz,et al.  The GK rat beta-cell: A prototype for the diseased human beta-cell in type 2 diabetes? , 2009, Molecular and Cellular Endocrinology.

[181]  J. Leahy,et al.  Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy. , 1988, The Journal of clinical investigation.

[182]  C. Alpers,et al.  Mouse models of diabetic nephropathy. , 2005, Journal of the American Society of Nephrology : JASN.

[183]  E. Feldman,et al.  Criteria for creating and assessing mouse models of diabetic neuropathy. , 2008, Current drug targets.

[184]  Å. Lernmark,et al.  A Major Loss in Islet Mass and B-cell Function Precedes Hyperglycemia in Mice Given Multiple Low Doses of Streptozotocin , 1981, Diabetes.

[185]  G. Mithieux,et al.  beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. , 2001, Diabetes.

[186]  Roger D. Cox,et al.  Overexpression of Fto leads to increased food intake and results in obesity , 2010, Nature Genetics.

[187]  L. Orci,et al.  Ablation of islet endocrine cells by targeted expression of hormone-promoter-driven toxigenes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[188]  V. Serre-Beinier,et al.  Immunosuppressive Effects of Streptozotocin-Induced Diabetes Result in Absolute Lymphopenia and a Relative Increase of T Regulatory Cells , 2011, Diabetes.

[189]  Hong Chen,et al.  Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice , 2011, Peptides.

[190]  Bernard Thorens,et al.  Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. , 2002, American journal of physiology. Endocrinology and metabolism.

[191]  R. Girgis,et al.  Exercise as an end‐point in pulmonary hypertension trials , 2010, International journal of clinical practice. Supplement.

[192]  S. Yoshida,et al.  AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes. , 2010, Biochemical and biophysical research communications.

[193]  A. Ktorza,et al.  Anatomical versus functional β‐cell mass in experimental diabetes , 2008, Diabetes, obesity & metabolism.

[194]  L. Groop,et al.  Evidence that BMI and type 2 diabetes share only a minor fraction of genetic variance: a follow-up study of 23,585 monozygotic and dizygotic twins from the Finnish Twin Cohort Study , 2010, Diabetologia.

[195]  H. Jun,et al.  A new look at viruses in type 1 diabetes. , 2003, Diabetes/metabolism research and reviews.

[196]  H. Edlund,et al.  Insulin-promoter-factor 1 is required for pancreas development in mice , 1994, Nature.

[197]  G. Lacraz,et al.  IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat , 2009, Proceedings of the National Academy of Sciences.

[198]  B. Roep Are Insights Gained from NOD Mice Sufficient to Guide Clinical Translation? , 2007, Annals of the New York Academy of Sciences.

[199]  K. Polonsky,et al.  Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. , 1998, Diabetes.

[200]  S. Efendić,et al.  Islet gene expression and function in type 2 diabetes; studies in the Goto‐Kakizaki rat and humans , 2007, Diabetes, obesity & metabolism.

[201]  C. Mathieu,et al.  Increased β-Cell Mass by Islet Transplantation and PLAG1 Overexpression Causes Hyperinsulinemic Normoglycemia and Hepatic Insulin Resistance in Mice , 2010, Diabetes.

[202]  S. Ye,et al.  Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes , 2011, Diabetologia.

[203]  S. Bonner-Weir,et al.  Responses of Neonatal Rat Islets to Streptozotocin: Limited B-Cell Regeneration and Hyperglycemia , 1981, Diabetes.

[204]  J. Markmann,et al.  Induction of diabetes with signs of autoimmunity in primates by the injection of multiple-low-dose streptozotocin. , 2011, Biochemical and biophysical research communications.

[205]  Zhiyong Wang,et al.  GLUT2 in Pancreatic Islets: Crucial Target Molecule in Diabetes Induced With Multiple Low Doses of Streptozotocin in Mice , 1998, Diabetes.

[206]  P. Butler,et al.  Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. , 2006, ILAR journal.

[207]  D. Coleman Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice , 1978, Diabetologia.

[208]  A. Attie,et al.  The genetic landscape of type 2 diabetes in mice. , 2007, Endocrine reviews.

[209]  C. Kahn,et al.  Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. , 2004, Diabetes.

[210]  T. Kay,et al.  Prevention of “Humanized” Diabetogenic CD8 T-Cell Responses in HLA-Transgenic NOD Mice by a Multipeptide Coupled-Cell Approach , 2011, Diabetes.

[211]  D. Pipeleers,et al.  Determinants of the selective toxicity of alloxan to the pancreatic B cell. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[212]  M. Tschöp,et al.  Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction , 2007, Diabetologia.

[213]  O. McGuinness,et al.  NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. , 2009, American journal of physiology. Endocrinology and metabolism.

[214]  W. Jung,et al.  Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344). , 2011, Biochemical pharmacology.

[215]  A. Ergul,et al.  Erectile dysfunction in young non-obese type II diabetic Goto-Kakizaki rats is associated with decreased eNOS phosphorylation at Ser1177. , 2010, The journal of sexual medicine.

[216]  G. Morahan,et al.  Faculty Opinions recommendation of Serotonin regulates pancreatic beta cell mass during pregnancy. , 2010 .

[217]  M. Dolz,et al.  cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells: a defect counteracted by GLP-1. , 2011, American journal of physiology. Endocrinology and metabolism.

[218]  E. Leiter,et al.  Adoptive Transfer of Diabetes Into Immunodeficient NOD-scid/scid Mice: Relative Contributions of CD4+ and CD8+ T-Cells From Diabetic Versus Prediabetic NOD.NON-Thy-1a Donors , 1993, Diabetes.

[219]  Ji-yeon Lee,et al.  RIP-Cre Revisited, Evidence for Impairments of Pancreatic β-Cell Function* , 2006, Journal of Biological Chemistry.

[220]  Xiaoxiao Hu,et al.  Brain expression of Cre recombinase driven by pancreas‐specific promoters , 2010, Genesis.

[221]  K. Hayashi,et al.  Strain differences in the diabetogenic activity of streptozotocin in mice. , 2006, Biological & pharmaceutical bulletin.