Learning Bayesian networks from data: An information-theory based approach

[1]  Marek J. Druzdzel,et al.  A Hybrid Anytime Algorithm for the Construction of Causal Models From Sparse Data , 1999, UAI.

[2]  R. Greiner,et al.  Comparing Bayesian Network Classifiers , 1999, UAI.

[3]  Joe Suzuki,et al.  Learning Bayesian Belief Networks Based on the MDL Principle : An Efficient Algorithm Using the Branch and Bound Technique , 1999 .

[4]  Paul J. Krause,et al.  Learning probabilistic networks , 1999, The Knowledge Engineering Review.

[5]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[6]  Nir Friedman,et al.  The Bayesian Structural EM Algorithm , 1998, UAI.

[7]  Lonnie Chrisman,et al.  A Roadmap to Research on Bayesian Networks and other Decomposable Probabilistic Models , 1998 .

[8]  Dale Schuurmans,et al.  Learning Bayesian Nets that Perform Well , 1997, UAI.

[9]  Yang Xiang,et al.  Exploring Parallelism in Learning Belief Networks , 1997, UAI.

[10]  Moninder Singh,et al.  Learning Bayesian Networks from Incomplete Data , 1997, AAAI/IAAI.

[11]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[12]  Weiru Liu,et al.  Learning belief networks from data: an information theory based approach , 1997, CIKM '97.

[13]  Thomas S. Richardson,et al.  Heuristic Greedy Search Algorithms for Latent Variable Models , 1997, AISTATS.

[14]  Paola Sebastiani,et al.  Discovering Bayesian Networks in Incomplete Databases , 1997 .

[15]  Thomas G. Dietterich Machine-Learning Research Four Current Directions , 1997 .

[16]  Benjamin W. Wah,et al.  Editorial: Two Named to Editorial Board of IEEE Transactions on Knowledge and Data Engineering , 1996 .

[17]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[18]  David Maxwell Chickering,et al.  Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.

[19]  Dan Geiger,et al.  A sufficiently fast algorithm for finding close to optimal junction trees , 1996, UAI.

[20]  Luis M. de Campos,et al.  An Algorithm for Finding Minimum d-Separating Sets in Belief Networks , 1996, UAI.

[21]  Sumit Sarkar,et al.  An information theoretic technique to design belief network based expert systems , 1996, Decis. Support Syst..

[22]  Wray L. Buntine A Guide to the Literature on Learning Probabilistic Networks from Data , 1996, IEEE Trans. Knowl. Data Eng..

[23]  Sumit Sarkar,et al.  Constructing Efficient Belief Network Structures With Expert Provided Information , 1996, IEEE Trans. Knowl. Data Eng..

[24]  Christopher Meek,et al.  Learning Bayesian Networks with Discrete Variables from Data , 1995, KDD.

[25]  Christopher Meek,et al.  Strong completeness and faithfulness in Bayesian networks , 1995, UAI.

[26]  Christopher Meek,et al.  Causal inference and causal explanation with background knowledge , 1995, UAI.

[27]  Moninder Singh,et al.  Construction of Bayesian network structures from data: A brief survey and an efficient algorithm , 1995, Int. J. Approx. Reason..

[28]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[29]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[30]  Wai Lam,et al.  LEARNING BAYESIAN BELIEF NETWORKS: AN APPROACH BASED ON THE MDL PRINCIPLE , 1994, Comput. Intell..

[31]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[32]  Uffe Kjærulff,et al.  Reduction of Computational Complexity in Bayesian Networks Through Removal of Weak Dependences , 1994, UAI.

[33]  Remco R. Bouckaert,et al.  Properties of Bayesian Belief Network Learning Algorithms , 1994, UAI.

[34]  Peter Cheeseman,et al.  Selecting Models from Data: Artificial Intelligence and Statistics IV , 1994 .

[35]  Richard Scheines,et al.  TETRAD II: Tools for Discovery , 1994 .

[36]  S. K. Wong,et al.  Learning Conditional Independence Relations from a Probabilistic Model , 1994 .

[37]  Yang Xiang,et al.  CONSTRUCTION OF A MARKOV NETWORK FROM DATA FOR PROBABILISTIC INFERENCE , 1994 .

[38]  Russell G. Almond,et al.  Strategies for Graphical Model Selection , 1994 .

[39]  J. Pearl,et al.  Logical and Algorithmic Properties of Conditional Independence and Graphical Models , 1993 .

[40]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[41]  Franz von Kutschera,et al.  Causation , 1993, J. Philos. Log..

[42]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[43]  S. Orbom,et al.  When Can Association Graphs Admit A Causal Interpretation? , 1993 .

[44]  Judea Pearl,et al.  An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation , 1992, UAI.

[45]  J. Badsberg Model Search in Contingency Tables by CoCo , 1992 .

[46]  P. Spirtes,et al.  An Algorithm for Fast Recovery of Sparse Causal Graphs , 1991 .

[47]  Richard E. Neapolitan,et al.  Probabilistic reasoning in expert systems - theory and algorithms , 2012 .

[48]  Franz Josef Radermacher,et al.  Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Judea Pearl) , 1990, SIAM Rev..

[49]  L. N. Kanal,et al.  Uncertainty in Artificial Intelligence 5 , 1990 .

[50]  Stuart L. Crawford,et al.  Constructor: A System for the Induction of Probabilistic Models , 1990, AAAI.

[51]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[52]  David Heckerman,et al.  Separable and Transitive Graphoids , 1990, UAI.

[53]  Terrance E. Boult,et al.  Pruning bayesian networks for efficient computation , 1990, UAI.

[54]  Gregory F. Cooper,et al.  An Entropy-driven System for Construction of Probabilistic Expert Systems from Databases , 1990, UAI.

[55]  Alice M. Agogino,et al.  Automated Construction of Sparse Bayesian Networks from Unstructured Probabilistic Models and Domain Information , 2013, UAI.

[56]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[57]  Gregory F. Cooper,et al.  The ALARM Monitoring System: A Case Study with two Probabilistic Inference Techniques for Belief Networks , 1989, AIME.

[58]  P. Spirtes,et al.  Causality From Probability , 1989 .

[59]  David Heckerman,et al.  An empirical comparison of three inference methods , 2013, UAI.

[60]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[61]  Max Henrion,et al.  An Experimental Comparison of Knowledge Engineering for Expert Systems and for Decision Analysis , 1987, AAAI.

[62]  Judea Pearl,et al.  The recovery of causal poly-trees from statistical data , 1987, Int. J. Approx. Reason..

[63]  Max Henrion,et al.  Propagating uncertainty in bayesian networks by probabilistic logic sampling , 1986, UAI.

[64]  N. Wermuth,et al.  Graphical and recursive models for contingency tables , 1983 .

[65]  C. Glymour Causal Inference and Causal Explanation , 1982 .

[66]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[67]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[68]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.